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Summary of the Copenhagen Problem - page 2

Explanation of symbols and list of columns.

1. Classification according to Stromgren's 1933 paper in the Bull, Astr, (2),
9, 87.

2. Classification according to Strémgren's 1925 paper in "Ergebnisse der:
exakten Naturwissenschaften, IV,

3. Motion relative to the rotating coordinate system

retrograde

R
D = direct

i]

Motien relative to the fixed coordinate system

R*
D%

retrograde
direct

4, Motion takes place around ...
5. Motion is periodic {(P) or asymptotic (A).
6. Motion is symmetric (S) or asymmetrix (A) with respect to the rotating axes.

7. Class of orbits starts and ends, or reenters (R).

9. Principal author
S = Stromgren
B = Burrau
M = Moller
T = Thiele
10. Astronomishe Nachrichten. No.
11. Copenhagen Obs. Publ. No.

12. Publication date.

13, Remarks.
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Introductlion to Dynamic Programming

by

Dr. Richard E. Bellman
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Introduction to Dynamic Programming

In this series of five lectures, I would like to
describe some of the fundamental ideas of dynamic program-
ming, and some of its applications to the computational
and analytic solution of problems in the calculus of
varlations, feed back control, trajectory optimization,
and related problems. Many of these problems arise in a
very natural way in connectlion with space travel. I
would like first to turn to the purely mathematical
aspects of the problem. Let us begin by discussing the
classlcal approach of the calculus of variations, and
point out some of its limitations. When we thus have
motivation for finding some more efficient methods in
certain cases, we will consider the approach of the
methods of dynamic programming.

Suppose we start with a simple problem. We wish to
minimize the functional

b
(1) [ g(u,u',t)dt
a

over all functions u(t) which, say, start out with a
pre-assigned value. We have to find the optimal curve.
This could be a trajectory which\minimizes, for example,
the time required to go between two points, or it might
be the total amount of fuel consumed, or some comblnation
of the two.

The problem is well set and straightforward.

Classical calculus of variations says we obtain from the
first variation of the integral an Euler equation,

(2)  gh(gy1)-8,~0
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Introduction to Dynamic Programming 2.
with associated initial condition u(a)=c and end condition

._o,

g1 =
UWiit=p

which is a necessary condition for a curve minimizing (1).
At this point, most of the classical texts, if not all
the classical texts, on the calculus of variations, close
up shop and say the problem is solved. All that remains
is to obtain a numerical solution. As a matter of fact,
most often, they don't even mention that.

It's rather interesting to examine the phillosophy of
the concept of a numerical solution. Up until about the
early 19th centruy, the mathematicilans that existed would
not have distingulished themselves very much from what we
would now call physicists, applied mathematiclans, or
astronomers. To show the very close connectlon that
existed between the two subjects, 1t 1s interesting to
note that many held posts 1in what are still called in
our country Departments of Mathematics and Astronomy.
There was no question of the importance of a numerical
solution. If Gauss or Newton was Iinterested in a problem
in celestial mechanics, he didn't feel that writing down
an equation was a way of ending the problem. As far as
they were concerned, this was a beginning of the problem.

Along about the beginning of the 19th century, with
the great interest in rigorous foundatlions of mathematics,
and rigorous derivations, a breed of mathematiclans began
to arise that was solely interested in the rigorous
details and paid no attention to the applicatlons. This
split grew until at the present time not only do we have

v



Introduction to Dynamic Programming 3.

mathematlicians who do not work directly with numbers or
with physical problems, but we have many hundreds of them
who pride themselves in it and are very very proud of the
fact that they wouldn't know what a resistor looked like
if they stumbled over it, or what a nuclear reactor would
look like even if a red light were flashing.

The separation between scilence and mathematics has
been most unfortunate and, of course, it has had a most
unfortunate influence upon mathematics, because very
often one of fhe most interesting parts of the problem
1s the problem of actually getting a numerical solution
to a numerical question. This certainly was one of the
dicta of one of the greatest mathematlicilans of all time,
Gauss. Until you had a feasible method for obtaining
a numerical solution, you had no solution at all.

What has changed the picture very greatly, is we now
have dlgital computers, which can do arithmetic very
very fast. They can multiply a 10 digit number by another
10 digit number, in about a micro-second. Actually it
is about six-tenths of a micro-second---let's say a
1/100,000 of a second---so they can do a hundred thousand
multiplications of that type in a second. This means
that there 1s a possibility that one can use methods which
are qulte different from the methods you might use if
you only had desk computers, or slide rules,

One of the themes of my serles of lectures will be
to show that with the modern digital computer, we now
have feasible methods available, which were not feasible
before. Just as Poincaré sald that a proof is a matter of the
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fashion of the time, every proof 1s sufficient to the day thereof,
so 1t is with computational solution. When you talk

about the feasibility of a method, there's no absolute
connotation. It's a function of what computational

devices you have. If we had devices that could do

arithmetic lOwtimes faster than the devices we have now,

we could use the crudest type of enumeration to solve

some of the most complex andidifficult problems around.

It 1s rather 1lnteresting to take a practical approach
and find out what are some of the difficulties that you
encounter. The first difficulty, you might say, 1s that
Euler's equation (2) is only a necessary condition. Just
as in ordinary calculus, if I want to find a minimum of
a function over a given interval when I take the first
variation and set it equal to zero, I might find a number
of solutions, Fig. 1.

v

Fig. 1

How do I tell which one 1is the absolute minimum? Calculus
gives us no method of doing that. Calculus says that I
can glve you necessary conditions for a local minimum

or maximum, or sometlimes of course, a point of inflection,
something far more complicated, but I cannot give you
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you any simple way of finding the absolute minimum. Now
for a well-behaved function of a finite number of variables,
you usually have only a finite number of critical points.
Thus, in many cases, it's not too difficult to test for

the absolute minimum.

For a problem in the calculus of varlations, 1l.e. in
infinite-dimensional space, it's easy to have a denumerable
number of solutions satisfying these two-point boundary
value problems. I think the easlest example of that 1s
to take a torug, Fig. 2.

Fig. 2

Take two points A and B on the torus and say find the
minimum distance between the two points, find the geodesic
connecting A and B. Now, there is one curve (shown

801id) connecting the two points which 1s the absolute
minimum. Also, provided A and B are sufficiently close,
there is a family of curves, one of which 1s shown, which
winds around once. I can also find another famlly of
curves which winds around twice and so on. In each one of
these famllies there will be an absolute minimum for that
family, and each one of these minima will be a relative
minimum; and the solid 1line, the one that does not wind

i9
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around at all, will be the absolute minimum. This is a
very nice way of showing that in a very sensible problem
you can have a denumerable number of solutions.

Let us consider the computational aspects of the
classical approach. Computationally, we face the problem
of solving in general a nonlinear differential equation
or nonlinear system subject to two-point conditions.
Sometimes the two-point conditions come on because of the
variational constraint. Sometimes they come on very
naturally because we insist that we want to find the
minimum time from one fixed point to another fixed point.
If we look at the numerical problem involved and ask what
can digital computers do if we're talking about large
systems---5 dimensional, 10 dimensional, or 20 dimensional---
digital computers can do one thing well. They can perform
repetitive operations, which means that computers can
solve initial value problems very very easily. The 1deal
problem for a digital computer is to solve ordinary
differential equations subject to initial conditlons.
Unfortunately, in a calculus of variations; we have one
initial condition missing at each point. The standard
way to handle that 1is to, say, guess an initial deriva-
tive u'(a) and compute out families of curves, (Fig. 3),
until we find one which fits the end condition at b.

L
//
Guess w'(s) cond H—\'Or\
t
3 b




Introduction to Dynamic Programming 7.

We can use an 1Interpolation method to zero in at t=b.
This 1s the procedure which is used today with a certailn
amount of sophistication, but not much more sophistication.

There are several things which are wrong with this
approach. In the first place, if this is a high-order
equation,you’re guessing points in, say, 4-dimensional,
8-dimensional, or 10-dimensional space. You might have
to try a very large number of these trajectories.
Secondly, many of these varlational problems one can
show are i1nherently unstable. This means, that a very
small change in the l1lnitial conditions can produce a
great change in the terminal conditions. Thirdly, (2)
is only a necessary condition. One 1is finding a
relative minima and, of course, since the Euler equation
is just the equation of the first variation, one has to
test that one is not also finding relative maxima or more
complicated saddle point types of solutions by this
trial and error approach. So, the two polnt boundary
conditlon is a very important restriction on the applica-
bility of the digital computer or any other type of
computational technique.

Let's turn to more serious restrictions still.
Suppose I introduce constraints on the optimizing
function of the form, say,

]
jut £ k.

This could be interpreted as prohibiting optimal curves

of the form

Fig. 4a
12




Introduction to Dynamic Programming 8.

If we're talking about the motion of a rocket or an
interceptor, or a missile, then it's clear that we don't
want to consider motions like that. We don't concede
any device that we have can do something like this.

Then, of course, you may have constraints on the
function U itself. For example, you may say I want the
altitude to be below a certain value, or above a certain
value. I may have constraints of this type.

(3) a;€u(t)so.

Actually, as far as the most important englineering and
physical applications are concerned, the constraints

are a very integral part of the program. Now, if one has
constraints of the form (3) the situation becomes very
complicated. Let's go back to the one-dimensional case.
Suppose I have a function u(t) given over [a,q .

U
yal
e
SN
>t
5 0<t< 1 i

Fig. U4b

If I apply calculus, I get the turning polnts,but I know
that if I have constraints I have to test the end points.
Of course, this 1is deliberately drawn so that in this

case the end points are the absolute minlimum and the
absolute maximum. Now what does this mean in the calculus
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of variations? It means this. Suppose I draw u as a
function of t.

w
A

O\

o,

1
Flg. 5

What can happen (and it's easy to construct very simple
examples in which this does happen) is that the solution
is constructed in the followling way: Starting from t=0,
you follow an Euler trajectory until you hit a boundary.
Then you go along the boundary for awhile; then you follow
an Euler trajectory until you hit another boundary, and so
on. You can see what the computational difficulties are.
The points A, B, C, D, ..., where one hits the boundary are
unknown. As a matter of fact, there is no simple way of
determining how many different pieces the solution will
have. There 1s no simple way of looklng at a problem with
constraints and determining, for example, whether it will
hit the boundary at all! If 1t hits the boundary, does

it stay on the boundary all the way or come off, and so
forth? So if we take the computational difficulties that
we had. before, without constraints, and add constraints,
you see that you have a very formidable problem.

There are classical techniques in the calculus of
variations for handling constraints. What these do is
Introduce additional functions satlisfying additional two-
point boundary conditions. In some cases, 1f the constraints

14
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are simple enough, one can apply classical techniques.

A nice example of an important constraint ls where one
wants the derivative to be +1. For example, in the opti-
mization of rockets, 1f you're talking about when you go
full speed and when not---since there's so little control
over the rocket engine---essentially all you can say 1is
make the rate at which you burn fuel either +1 or O;
either burn at maximum rate or do not burn at all.

Of course, that's a fairly simple example, because, in
that case, one can show that there are two regions or
three regions for which you have to pick a point at which
you want to go at maximum rate, and so forth. But when I
talk about control problems, I'1ll come back to this again.

This type of control, where there are only two values
has the picturesque name, "Bang-Bang Control". It's very
important from the engineering point of view, because it's
clear that it's much easier to have a device which is
eilther on or off than something which has to measure cer-
tain state variables and adjust itself to those variables.
So this 1is a highly desirable type of control, which is
why 1it's become of importance.

Now, suppose I introduce uncertainties, first in the
form of stochastic elements. Then I can make the problem
even more complicated and add adaptive elements, As an
example, suppose we're trying to fly through an atmosphere
which has certaln unknown properties, and we have both
to direct our course and determine something of the pro-
perties of the atmosphere at the same time. That would be
an adaptive, or learning, process. I'll talk about these
in more detail.
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Let's just assume there are certain unknown features
present---winds, small devliations of the atmosphere,
small deviations in the way in which the engine runs,
small errors in direction and, in order to get around
the fact that we really don't know about these things,
we assume that they're random variables. This i1s always
an assumption, and what we'd like to do is replace these
stochastic elements by adaptive elements. We hope that
we can learn more about the unknown elements as we go
along.

Now, of course, if we conslider these more modern fea-
tures, then the classical techniques are very difficult.
This 1is some of the motivation for a reexamination of
variational problems to see if we cannot tackle them by
different methods which provide, 1n some cases, a better

analytic formulation and/or a better computational approach.

But I want to mention right now that in no way does a

new approach supercede the application of an o0ld approach.
Generally speaking, it's very hard 1n mathematics to find
any situation where one method completely replaces another.
To a great extent, as new methods occur they complement

the older methods, and it's the combilnation of the two
together that is the most powerful. What we'!ll find is
that in dynamic programming we're constructing a theory
which is dual to the classical theory---dual in the
classical geometric sense. I'll point this out again later.
This makes it very clear that the two theories taken to-
gether will be very much more powerful than either one

by itself.

Before discussing variational problems, let us take
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a very simple problem in calculus in order to illustrate
the approach we're going to use. Suppose I take the
schoolboy calculus problem: A stone is thrown straight up
with velocity V. What is the maximum height 1t attains?
We know how to solve the problem in terms of calculus. We
say let x(t) represent the altitude of the stone at time
t. We are assuming implicitly, of course, that once the
stone 1s thrown up, it's acted upon only by gravity,

which means that the acceleration 1is -g, directed down-
wards. The initlal condition is that at time zero the
altitude was zero, and we sald the initial velocity was

V; so we're as happy as could be, because we have a second
order differential equation, x"=-g with two initial values,
x(0)= 0 and x'(0)=V, which we can, if we insist upon it,
solve computationally, and Just trace out trajectories.

In thils case, of course, we can actually carry out the
solution to obtain

(4)  x'=Vigt,  x=Vt+gtZ/2.

The trajectory over time 1is

which, we find, has a maximum value. To find the maximum
value I differentiate x(t) with respect to time and
find where x'=0. Thus the time at which maximum altitude




Introduction to Dynamic Programming 13,

is obtained is V/g. I substitute this into the trajectory
equation (4), and we see that

2
(5) *max

8l

We say, well, what more can we want? T can make the
problem more complicated by assuming that we're going
through an inhomogeneous atmosphere, so that in addition
to the influence of gravity, we have a retarding force
due to the velocity. If I make this a function of x
and x!' which is sufficiently complicated, I cannot solve
it explicitly. But, we say we don't care. Glve us any
function g(x,x'), so that the differential equation is

(6) x'' = g(x,x').

I have the initial conditions. I can run out the trajectory,
find out where the maximum time occurs, and get the
solution to the problem.

What's wrong with that? First, perhaps 1t 1isn't
fair to ask what's wrong with 1t; but let's ask, what it
is we don't 1like about it. One thing we don't like 1s
that this solution gives us too much information. Remember,
I just asked for one bit of information, 1i.e., what 1s
the maximum altitude? I'm not interested in the whole
trajectory, simply the maximum trajectory. Furthermore,
I would like to know what is the maximum trajectory as
a function of the initial velocity. In order, therefore,
to solve that problem, for every initial value V, you would
have to run out a trajectory, assuming that you're in

i3
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the general case where you cannot solve explicitly,
and from each one of these runs, extract one point, the
maximum altitude. Then you would turn out with a curve.

X

max

Fig. 7

But each point would require the calculation of one
complete trajectory. This 1s a rather inefficient way
of doing 1t.

Is there any way in which we can get an equation
for Xnax 28 2 function of the velocity directly? Can
we use another approach? We find there is another approach,
and this 1is the approach that we are going to refine to
the dynamic programming approach when we introduce

maximization.

Let's start all over again and find the maximum
height. We write down the following obvious statement:

The maximum helight depends on the initial velocity.

Surely we all agree about that. It "depends on" is a
mathematical translation of "is a function of", so I
write

Maximum height = f£(V).

i3
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I want to obtain an equation for this maximum height.

I observe the followlng:
I start the stone at altitude O.

X
A
— A
3P
9YUUI\ 5
Fig. 8

At the end of the time A it has achieved a certain
altitude, poilnt A. Take [\ to be an infinitesimal,
which means that the altitude 1t has obtained 1s VA ,
if it's thrown up. Now, I see that whatever the maximum
height starting from O was, 1t will be the altltude

v A » plus the maximum helght obtained starting from A
with a new initial velocity. Therefore:

The maximum height starting at ground zero with
veloclty V is egual to the height attalned 1n time
plus the maximum subsequent helght.

7’

Let's translate thls into algebra. We've assumed that the

atmosphere is homogeneous, so we now have a new problem
which we start from point A wlth a new velocity. What
is the new velocity? Wetlve lost gIA due to the pull

of gravitation; according to our definition of the function f,

20
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f 1s the maximum height when we start with the velocity
v-g /\ and this is all O(Z&z), where 1s an infinitesimal.
Our equation is

(8) £(v) = v + £(v-gA) + o(A?).

Equation (8) says that if I look at the process, after
a certain‘timezx has elapsed, I have exactly the same
type of process, except I've started with a new velocity
because I'm assuming, in this simple model, a homogeneous
atmosphere. Let's expand in powers of A and let ZX
approach zero. We're left with

/
(9) £/ (v) = % , £(0) = 0.
The initial condition arises because if the velocity 1is
zero the maximum altitude 1s zero. The solution is

v

(10) £r(v) = o

the desired result.

The nice thing about this approach is that we've
found out only the informatlion that was desired. We don't
answer such problems as where the stone was at the end of
two or three seconds. The question was: what 1s the
maximum height given the initial velocity? This 1s what
we answer. I make an issue about this because I want to
emphasize that 1f you understand this problem,’ you
understand everything that follows, for this has everything
in it. It has the whole idea that we're going to use.
The only thing that's going to be more complicated is that
we're not going to allow the stone to follow it's own
desires, or the pull of gravity, but we're golng to
determine what the velocity 1ls going to be, as we go along.
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So we're going to add some minimlzation and maximization.
But the basic idea of looking at the problem in this

way, translating an obvious verbal statement 1nto an
equation, is all that we're golng to use, no more, no
less sophistication.

Let us now consider a slightly more difficult
problem:

A stone 1s thrown straight up with velocity V

into an inhomogeneous atmosphere with air resis-
tance dependent on altitude and velocity. What 1s
the maximum altitude it attains?

We are at ground zero, but as we go up to various altitudes,
we find that there are strata. The strata have different
densities, for example, so that we have a resistance

which depends upon the altitude and, of course, upon the
velocity. Now the classical approach is straightforward.
I have the equation

(11) X = g(x,x), with x(0) = 0 and x'(0) ='V .

As g is a function which does not yield to an explicit
solution, all I do 1s run out the trajectories on the
computer, and to each value of V, I get an X ax This

is the method that is used at the present time. We can
do something which 1s a little better. Can we find the
function of V directly? We can't do it easily in this
case because of the 1nhomogenelty; so we have to extend
the problem a little bit. Let's take the followlng more
general problem:

22
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Suppose I start an altitude h, and I throw the stone
straight up. Then what is the maximum distance
attained above ground?

This 1s the problem which we'll study. The maximum
distance above ground depends clearly upon the initial
distance h, and upon the velocity V. Let

H(h,y) = £(h,V), + h = maximum distance above ground
starting at altitude h with
Velocity V, where f(h,V) is
the maximum additional distance
gained, which also depends upon
h and V.

Now, what equation do we get? Just as before, I say

let the process operate in infinitesimal time A .

I started at h, I go up another distance V A . Now,

I'm in exactly the same situation, except my new distance

above ground 1s h + V A and my new velocity is V - g(h,V).

My assumption was that in x"

certain function of position and velocity. This is
A-g(h,V). The equation is '

s the acceleration was a

(12) H(h,V) = h+V- A + |£(b+V-A, v-Ag(n,v) )| + o( A?).

Now 1if we let [&approach zero, we get to a partial differ-
ential equation,

- Of 2f =
(13) 0 = V+V,ah + g(h,v),aV R f(h,o) 0
where the initial condition arises as before.

Now 1f we wanted to pursue this analytically, we could

23
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use the theory of characteristics. If we wanted to pursue

it computationally, then we could solve this as a first
order partial differential equation. Og‘we can use
the recurrence relation {12) itself.

This problem also requlres a computational solution,
and you might wonder what you have galned over the
original computational solution. The answer is that if
you solve this computationally, every number that you
grind out is meaningful, because every one of these
functions is an 1lnteresting function to the engineer or
the aerodynamicist who is doing the problem. He wants
to know how much farther you go 1f you're at a certain
altitude and a certain veloclty. Whereas, 1f one uses
the conventional approach, he has to compute all the
trajectories and pick out Just one of them. So this
function gives us the information we want in terms of
the variables which describe the solution.

Let us now apply this technique to the calculus of
variations. Before applying 1t to a general problem,
let me apply it to a very simple problem, a problem
of geodesics. Suppose, abstractly, I have a polnt p
in phase space, and I want to go to ancther point r in
phase space. In other words, for a three-dimensional

trajectory problem I

Phase gpac@

Fig. 9
24




Introduction to Dynamic Programming 20.

this would be as follows: starting at a certain point with
certain initial velocitiles, what's the minimum time required
to get to another point with other velocities ? For this,

p may be two-dimensional, four-dimensional, six-dimensional,
or may have higher dimenslonality, depending upon the
problem. When we say, p 1s a point 1in phase space, we

mean p 1s essentlially a finite dimensional vector whose
components describe the state of the system. If it's

a conventional problem in mechanics, then pﬁhas as components
the position and velocity values. We want a path of
minimum time. What can we say about a path of minimum
time? Using the same idea that we did before, we say,
suppose we continue along the path to some point q.

We don't know at the moment what q we went to, but we can
say that the remainder of the path must also be a geodesic.
If pqr was a geodesic, say a path of minimal time, then,

if we take intermediate point q, the path qr must be a

path of minimum time. This 1s Jjust the idea we were using
before. We were saying that if we are throwlng a stone
stralght up and are looking for the maximum distance

above the ground, after we've gone a certain way along,

we find exactly the same type of problem ahead of us.
That's what we're saylng here. The original problem

was to find a minimum time from p to r, then at point

q the problem must still be to find a minimum time from

q to r. Subsequently, we'll describe why 1t 1isn't

always true that the time from p to q 1s mlnimal.

You might think that. It's true for some geodesics, but
not for others.

As before, introduce a function.
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f(p) = minimum time to go from p to r, which
depends upon where we start.

Itfs also a function of the terminal point, but for this
discussion let's keep the terminal polnt fixed. Then

f(p) will be the time required to go from p to q, whatever
that time 1is in 6ur co-ordinate system, plus the minimum
time required to go from q to r. This 1s a function which
we ‘ve defined for all points p. '

How should q be chosen? I say q should be chosen to
minimize

(14) £(p) = Mn )+

“(p,qy (q,)

Now there's one further idea added. If we have a choice
of several q's, say dys dos q3. -y

0(¢

phase Space

Fig. 10

how do we choose the appropriate q? We have to balance
two factors. We have to balance the time to get to qq
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plus the minimum time to go from a4 to r. So this
part is analogous to what we did before. This 1s now
a new idea. But it's again an obvious common sense
point of view.

Equation (14), as it turns out, contains most of
one-dimensional classical calculus of variations. 1I'll
give you some references to this subsequently. This
common sense, rather simple approach will contain the
classical Euler condition and other conditions. However,
we're interested in an approach which leads to a feasible
computational method.

Iet me give you a very simple illustration of this,
which 1is quite pertinent to general trajectory problems.
The problem actually arose in the following way: A
friend of mine was traveling across the country 'in a
plane, and he got into a storm. The pillot deviated from
course (he announced that he was deviating); and afterwards
my friend asked the pilot, "What rule do you choose to
deviate?" The pilot replied, "Well, I have to fly within
a certain distance of certain air fields."
friend was a mathematician, he immediately conjured up
the following problem: He said, "Suppose we have a set
of points on the map---citiles, air fields--- which

Since my

are numbered in some way

3 o0
.] [} .4 ’ 1] » N
. o [ J 'Y [ J
2 5 ¢
[ [4
Fig. 11
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with terminal point N. I give you a matrix T=(tl‘),
where tijis the time required to get from the i-th point
to the J-th point. I assume that any two points are
connected, which, of course, in general,will not be true.
All that means is that tij
between 1 and j. Computationally, you set 1t equal to

a very large number, which effectively rules out the use
of it as a path. I want to go from the initial point 1

to the terminal point N.

= o0 1f there's no trajectory

I can go in the following ways: I can go directly,
or I can stop once and then go, or I can stop three times,
four times, etec. This is a practical problem as far as
the routing of traffice 1s concerned, because, 1f this
is time, time is not directly proportional to distance,
as we know in going through traffic; and very often we're
willing to go several blocks or several miles out of our
way, so as to minimize the time required to get from one
point to another. So 1f you were goling from one point
to another in a city which you assume was laid out in
a rectangular grid, an appropriate problem would be:
Which streets do you follow at various times of the day
in order to minimize the time to get from:one point
to the other?

This looks like a very comblnatorial problem.- It
doesn't look like thHe kind of problem that one can handle
by calculus or the caldulus of varilations, but it lends
itself very nicely to the foregolng approach. The first
thing I do is conslder the general problem, not of getting

from the fixed point 1 to the fixed point N, but. of getting
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from an arbitrary point i to the terminal point N.
I can define a function

fy = the minimum time required to go from
i"to N, 1 =1,2, . .., N ;

fi is exactly the f(p) that I defined before. I drew
the geodesic, Flg. 10., as if it were a nice continuous
curve, but, of course, I didn't define what my phase
space was. This is a particular realization of the
problem I was talking about before. And I'll explain
shortly the relevance to actual problems in trajectory
optimization. If we're at i, what are we golng to do?
Clearly, we must go to some other polint J, so we use up

the time tij'r Then, starting from J, we go to N, and now
we want to minimize
min
1 = .
(15) £3 = 34 [tijf fj]

where we put J#1 because we insist that we go someplace.
Also

(16) £f. =0

which 1is a condition which glives us the unique solution.
It's clear you can add a constant to both sides of the
equation as it stands; but, if we add this condition, the
time required to get from N to N, or zero, then it's

not difficult to show we have a unique solution.

Computationally, how would we go about getting 1t?
We have the unknown value on both sides of the
equation, so we approximate in several ways. One way
to approximate is what one might call policy space.

23
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What policies could you have? The simplest policy would
be always go directly to N. If you always go directly,
fio = tiN* the time required to go from 1 to N. But
what's a slight improvement on that policy? It would be
to stop at one place in between. If you stopped at one
place in between, and then went directly, what you

would want tb do is minimize over the polnt at which you

start, and hence,

(17) g, (1) - T [t:ij-i‘ fi(O)]

If you continue in this way, it's first of all clear
that your sequence 1s decreasing, and furthermore, you
can show that 1t terminates at the end of a finite
number of steps. So we have a very simple way of solving
this problem. Subsequently, wheh I discuss the use of
the digital computer, I'll discuss the feasibility of
1t. It follows that if you have, say, a hundred points,
this is the type of calculation that one could do by
hand in the space of a few hours. We tried 1t out on
people who have had no mathematics at all, merely asking
them to perform these very simple operations---adding,
taking a minimum---it takes just a few hours to solve
very big networks.

The relevance to actual trajectory problems can be
shown by means of a one-dimensional problem. I start
at x(0) =c¢

[N
c
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l
Fig. 12

and I want to end at x(1)= X. What we can do is approXimate
the problem in the following way. Let's just draw a
vertical series of lines in [0,1] and assume that 1n some
way or another you can only be at a certain set of
points on these lines. Assume that these points were

all close enough together, so I know how to get to
nearby ones. Instead of allowing an arbitrary step,
assume that once we are on a given point on a given

line we can only go to one of the nearby points in

phase space. Then, by discretizing the'problem 1in this
way, we're back to this type of problem considered
earlier,which we know how to solve. So the fact that
this problem can be solved for very large numbers of
points, as I will discuss later---several thousana,

five, ten thousand points---means that we have a very
quick way of approximating to the solution of quite
complicated trajectory problems. I haven't established
the feasibility, because I haven't discussed exactly how
large N can be or what the time required is.
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There's one other point I wanted to mention. I have
sald that I would show why the initial part pq of the
optimal curve in phase space was not a geodesic. I
sald, suppose we want to go from point p to point r in
phase space. It's clear that segment qr must be a geodesic.
It's not at all clear that segment pq must be a geodesic,
and, in general, it's not true.

When is it obviously true? It's obviously true for
the following simple case: Suppose I take a certaln
point a,b in the xy plane,

Yy

(@2, bz)

(a,,b.)

(a,b)
P

Fig. 13

and I want to go to another point (aa, b2) in minimum
time. It's clear that both parts of the curve a, ajs

a, are geodesics, if the curve itself 1s a geodesic.

The proof is by contradiction. If part a, a, were not
a geodesic, I would use a minimum time path over a), as.
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Suppose that, not only do I want to get to point
(a2,b2) in minimum time, but I want to arrive there at
a certain angle. In other words, I want a path which
comes in at a certaln angle. This is now my definition
of a geodesic. Phase space is now not only in the position
coordinates but also velocity or angle coordinates. Then
it's clear that any terminal part of the curve must be
a curve which comes into this point at this angle. But
any former part of the curve 1s not a geodesic in this
sense. So the recurrence relation, the functional equation
that we use, works 1n the x-increasing direction 1if we
take the end. But 1t holds only for subsequent times. We
cannot make any statement in general about this.

This 1is quite different from what holds in the classical
calculus of variations. In the classical calculus of
variations when we have an optimal trajectory what we
know 1s that any part of thls trajectory is a solution
of the Euler Equation. This information, which is quite
useful, is also quite dangerous, because we know the
Euler Equation can have many solutions. If it had a unique
solution this would be very useful. If it had a multi-
plicity of solutions 1t doesn't give us the whole we
want. When we remove the multiplicity of solutions as
we have here, we ére sayling from here on that the solution
will be not only a necessary condition, but will be .
characterized uniquely by the condition that it 1s an
absolute minimum. We will discuss these things 1n more
detail. 1I'd like to point out that we automatically get
rid of the problem of determining what the absolute |
minimum is once we've determined various relative minima.



Introduction to Dynamic Programming 29.

References

For the approach to the ldeas of dynamic programming
given here:

R. Bellman, Adaptive Control Processes: A Gulded
Tour, Princeton U. Press, 19Cl.

For the connection between dynamic programming and the
calculus of variations:

S. Dreyfus, "Dynamlc Programming and the Calculus
of Variations", Jnl. Math. Anal., Appl., 1960.

N
W

s .




Calculus of Variations - Computational Aspects
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Calculus of Variations -- Computatlonal Aspects

In considering the minimization of a functional by
means of the classical theory of calculus of variations

: 3 3

we face the problem of solving a problem given in terms

of the Euler equation and associated end or natural boundary

condition. The minimizing arc, of course, is from a class
of arcs which satisfy the initial condition

(2) u(a) = ¢,

The initial point is fixed. The difficulties of this
approach have been pointed out earlier. It is clear that
the minimum value of the functional depends on the initial
point a, as well as the initial value of the minimizing
function ¢. We translate this mathematically, as before,
by introducing the function

:f a, C _.Mjr] u: u’, b dt,
,34 ( l](&’:cfa g(

Let the curve, Fig. 1, represent the minimizing arc.

yra




Calculus of Variations 2.

If we apply the method developed earlier to this problem,
we see that, for an arbitrary point a+/\,

(4) Min = Min Min

u[a, b] u[a, a+A] [u(a+A, b)]

In other words, no matter how we get to a+/\, the remaining
portion of the curve over the interval [a+[§, b] must be
a minimizing arc.

It is important to point out at this point that there
is a duality between the dynamlic programming approach
introduced here and the calculus of variations approach
discussed earlier. The calculus of variations considers
the minimizing arc to be a locus of points, and attempts
to find it by solving differential equations. The theory
of dynamic programming regards the extremal as an envelope
of tangents, and attempts to determine the optimal direction
at each point on the extremal. The former theory cannot
be extended to feedback control and other problems; the
latter can be extended naturally to include stochastic
and adaptive control elements, since at each point, at each
stage of the process, it gives as instructlons the optimal
direction in terms of present position.

Let us rewrite (3) using (4).

b
(5) f{a, c) = Min -f g{u, u', t) dt =
- u[a, b}/ a

a+/\ b

AR I | arp =
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Here we have already put Min " —>Min
u(a, a+A)  “u'(a)

Expanding in powers of A ,» Where A is infinitesimal, if
a < b,

as [\ —o.

(6) f(a, ¢) = Min [A-g(c, u'(a), a) +

u'(a)

fla+\, ctu'(a) - A )] + O(Ag).

Finally, expanding once more and letting A—) 0, we obtain
or dr

7) 0 = Min g(c, u'(a), a) + — + u'(a)—=|.

(1) ntn [ales wi@), @)+ SE v wiagd

For further details and particular references, see Applied
Dynamic Programming by R. Bellman and S. Dreyfis , Princeton
University Press, Princeton, N.J., 1962.

To illustrate the process, consider the problem

_ b2 2y
(8) s o) - min, fa 2 +u2 + o) at.

This can be transformed by means of the above algorithm to

\ 4 0 ,
(9) 0 = I:II}r(la) [u 2(a) +c® + ¢t + —a—-g- +u (a)—b—b—g].

By ordinary differential calculus, we minimlze over the
function u'(a), and we have the problem

(10) =

y - ¢ - 04, f(b: c) = 0,

where the boundary condition follows from the definition

w
@
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of f. This problem can be solved either by standard
numerical techniques or by equally standard methods for
partial differential equations.

Problem (1) is a very nice, but artificial, problem
because there are no constraints on the minmizing' arc.
To make it more realistic, we add constraint of the form

(11) |u'|<K

AN

Equation (6) becomes

(12) f(a, c) = ’fi’-‘(a>|<x[g‘°’ u'(a), a) +

flath, o, ut(a)- A )],

where, by assuring that A is small, we can drop terms

o( AQ) and smaller. Analytically, the addition of a con-
straint makes the problem more difficult; computationally,
it is easier to solve. To illustrate the last remark,
consider how one might solve the problem computationally.
We first divide the time scale into sub-intervals of con-
venient size. Of course, the acdcuracy of the result will
depend on the mesh size; but for the sake of argument, let
1t be of length A, a small but finite number. We can
think either of taking steps a—>a+/\ —a+2A, ... or
b, b-A, b-2/\, .... Sincé we know f(b, c) = 0, let us
start at t = Db.

Knowing £(b, ¢) = 0, take a = b-/\and replacing

u' by v

(13) £(b -A, <) =|lrl<in [g(c, v, b ~A) + £(b, ¢ + vA)]
ViSK -
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The last term in the brackets must vanish in view of
the end condition (10)2, i.e. f(b, ¢) = O for any c. Com-
putationally, (13) can be solved by a simple enumeration
process thch produces, for a fixed vaiue of b, a table
of £f(b-/\, ¢) for a range of c and v.

The role of the constraint, of course, is to allow
us to scan a much smaller range of v than would be neces-
sary without imposing a constraint.

The next step is to choose a = b - 2/A. The equa-
tion (12) becomes

(14) £f(b - 2\, ¢) = Min [g(c, v, b - 2A) + £(b -A, ¢ + vA )]

IvlgI(

where we know a set of values for the last term in the
bracket from (13).

Graphically, Fig. 2 In an a - ¢ plane, we are glven
f(b, c¢) along the line a = b.

C §=o

o.
1
[ ] [ ]
)
4 -a A Yoo
Fig. 2
49
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The computation proceeds as follows: choose a grid of
values for c, say, ¢ ==1c[&, k=0,1, 2,....,R. Using

(13) we then compute a sequence of values of £(b -A, ¢)
along the 1line a = b —ZX. Step-by-step we bulld up a com-
plete set of values of f(a, c¢c) to complete the calculation.

Here we can define the word policy = v(a, ¢). In a

u - t plane A
7‘(0@)03
e
S
A ard atd A ~—£...
t
Fig. 3

the "policy" 1s the choice of v(a, c), i.e. the slope of
the minimal arc, at each stage of the process of marching
out a solution to tte problem of optimizing the integral (1).

By means of this simple algorithm a whole set of values
of f(a, c) is found; one can in principle obtain from
this information a sensitivity analysis, information
which 1is usually more important in engineering applications
than just the one answer provided by tle classical ap-
proach. One actually can't be sure that the one answer
from classical analysls 1is the only answer or the answer
sought. On the other hand, thils simple computational
method circumvents questions of continuity, differen-
tiability, uniqueness, and, in particular, stability
problems associated with finite difference methods for
solving equations such as (10).
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As an example of an instability which arises in even
a very simple case consider

T 2 . 2
(15) Min f (u'® +u°) at , T fixed
u(o) =170

The Euler equations are

(16) W' -u=0, u(0) =1, u'(r) =0

The solutlons aT€of the form e’ and e ¥. If one tried to
solve this equation numerically regardless of the mesh
size, [Xt, round-off would introduce influences O(et)

and after Just a few steps the solution would be dominated

by the et term.

In the method of dynamic programming we are not inter-
ested 1n finding the solution, i.e. the locus of points
forming the opt imal trajectory over and over again for
each initial value. We just want to solve the problem
in the most direct and efficlent way and get to the end
point optimally. If we make a slight error along the
way, 1t doesn't matter, for we are Interested only in the
part of the trajectory that remains. An error means
we merely must make a slight change in direction on the
next step. The process has feedback aspects and hence 1is
inherently stable.

The above computational scheme is feasable on mo-
dern digital computers considering the size of current
rapid-access storage. Slow access storage, e.g. mag-
netic tape, is ignored in view of the large retrieval

3
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time. For example, an IBM 7090 can store approximately
32,000 ten-digit numbers. If our problem, equivalently
stated, is

(17) £ (c) = ?iT [ (c, v) + £ (T(v, c))]

=1, 2,00un.. =v + ce/Awith fo(c) known

then, for a reasonable grid size on the c - scale, say,

c =m@ (fm} £ M), we must compute 2M + 1 values of c.

At each c, the values of.fo(c) and go(c) must be stored.
For the minimization process we might scan the values of
|v| € k, for each value of which we must store fl(c):
vl(c), etec. Thus at this stage we require storage capa-
city of the order of 3(2M + 1) locations. Of course,

by various tricks one can store up to 100,000 ten-digit
numbers, but let us disregard that in this estimate. A
little arithmetic soon convinces one that the active sto-

rage of any modern computer can be exceeded in any moderate

problem. This is the limitation on the computational
feaB8ibility of the method.

On the other hand, regardless of the complexity of
the intregrand function in

b
(18) Min f g(u, u', t) dt
u(a)=cJ a

or the constraint functions,
(19) Ri(u" uS t) éo i = 1, ..... ’K

the time required to make typical calculations by means of
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the corresponding functional equation is the order of min-
utes even for a very fine grid.

For the problem

b
(20) - Min f g(ul, Usys Uqs ul, t) dat
ul a =Cl a

u2(a)=c2

the above results carry over directly if, now, all terms
are interpreted as vectors, e.g.

1
(21) c =(C2)

The choice of a policy becomes the choice Qf two direc-

tions,
A, A2
v
,uv
L BT N |
t z

one 1n u; - t plane, and one in the u, - t plane. The
computational feasability again depends on the rapid-
access storage capacity of the digital computer. If a
mess of N x N points is chosen 1in the cl— o plane, we
have N2 grid points. If, for example, N = 100, a not
unreasonable number, N2 = 104, which is already the order
of the largest storage facilities éurrently in use. We
see the fundamental difficulty is the "Curse of Dimen-
sionality."

The amount of space required to store a function for values
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of the argument can be reduced by certain techniques. Let
us conslder, in particular, the method of polynomial approxi-
mation of a function of one variable f(c). Every well-
behaved function can be approximated in the form

N

(22) £(e) Y §=O a, P, (c)

for example, as a polynomial approximation
N

(23) £e) 2 L act
. " k=0

or, as a sélution to a differential equation

N X ¢
(24) £(e) ¥ L ae k
) k=0 .

0

If we are told for example that polynomlal approximation
is used, we must store the vector a = [ao, ajs az,....,aN]
To recreate the function for a given value of c, then,

we must, by the nalve approach compute c, 02, c3,...., cN.
This involves 2(N - 1) multiplications. Of course, the ’
number of multiplications can be reduced by writing the

polynomial as
(25) (-« ( ((age +ayq) ctag)e+ .oonnnn. +a,)
which involves only N multiplications.

In the more general case, assume that we will store

the function in the form (22). To save storage, we must
pay in time for recreation. Thus we seek:QbKKc) that
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are easily computed. If ¢k(c) = oK » 1< o é 1 least
squares approximation

' : k2
(26) Mgﬁ .j;l (f(c) - égo a,c ) de

leads to system of linear algebraic equations of higher
dimensionality than is convenlient to solve. On the other
hand, 1t is easier to make use of orthogonality properties
of special polynomials - they are still polynomials -

that have the advantage of satisfying simple three

term recurrence. For example, one could replace ck by
Pk(c), the Legendre polynomials. Then

(27) M jlfu > e (c)|2a
akn N c) - é;o a, P, (c c

leads to the usual expression for Fourier coefficients

1
) I —— fl £(c)P, (c) de

By making use of such methods, the time required to

solve a four dimensional problem of the type discussed
above can be reduced to about two hours per stage.
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Dynamic Programming and Stochastic Control Processes -

After having discussed'the calculus of varlations and
iliustrated how dynamic programming techniques may be used
to treat problems in this area, let us discuss the same
subiect in rather an abstract way. This willl be useful
because we want to turn to the study of stochastic control
and adaptive control; if we see a topic in a more general,
more abstract setting, it makes it easier to extend the
tzchnigues that we've been using so far.

Dynamic programming is really an advertising name for
mathematical theory of multi-stage decision processes. It
is rather interesting to ask, why the name dynamic pro-
gramming? Why not something nice and respectable such
as the mathematical theory of multi-stage declslon pro-
cesses? First of all, it's clear that for advertising
purposes, the latter is too long to stretch across a page.
But the real reason was that back in 1949 and 1950, when
I was working on the problems which led to the development of
this theory, I was thinking in terms of decision processes.
I didn't like the term decision process itself because
decision theory already existed and was tied in with the
world of statistics. The problems of decislon theory
are particular cases of dynamic programming problems, but
they're quite specialized. I thought about planning,
but planning was definitely out for other reasons. Just
apbout that time, programming had come in. Programming was
a word which had nc real meaning, so it was very useful.
Ard, of course, if you wanted to be strict about 1it,
programming really does mean thinking of a program, which 1is
rlanning (making decisions). Finally I wanted an adjec-
tive to modify programming because there was another tech-
nigque called linear programming with which I didn't want
to get confused. It was necessary to emphasize the fact
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that this was a multi-stage process that dealt with pro-
cesses over time,

The classical word of mechanics for non-static, time—
varylng processes is dynamic. Dynamic programming sounded
like something that everybody should do. So I used the
name, and, as I say, it has the very nice advantage of
seeming to mean something but meaning nothing; you can
do anything you want under this guilse.

Actually I got interested in the program and problems
of this nature in connection with a quite specific prob-
lem. When I was a consultamt at Rand in 1948, the Air
Force was piaying a very lmportant role as a deterrent,
and S.A.C. (Strategic Air Command) was the most important
weapon that we had. The question was how to use S.A.C.
in the most efficient way. In the beginning, people thought
very nalvely in terms of one massive raid because, as
usual, the generals and admirals were always fight;ng the
last war extremely well, analyzing it, and writing their
memoirs. As Churchill, I think, said about some famous
general, "He sold his life very dearly to a publisher."
This leads one to an analysis of the last war. When they
thought about bombing raids, they thought about the
bombing raids from London over Berlin, a distance of
about four or five hundred miles, so that planes could
come and go. ‘ |

Eventually, by 1948 or 1949, somebody looked at the
map and realized that with the ranges we then had it was
Impossible for planes to come and go, expecially in day-
light, which meant that if you had a large number of tar- .
gets, you had to think in terms of a multi-strike operation
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in which you bombed a certain number of targets, a certain
number of planes returned, ycu attacked some further
targets, and so on. This had many complications. In the
first place, it was a multi-stage affair. Secondly, it
had stochastic elements in 1it. You couldn’t really plan
your second rald efficiently before you knew what happened
on the first raid. Nonetheless, you had to decide what

to do at the first raid. Some new mathematical features
were definitely present.

Like many mathematical efforts in connection with new
problems, I came out with some good techniques, although I
never made any contribution to the original problem.

Fortunately, time took care of that; as I mentioned earlier.

This is the situvation of most mathematical endeavors --

one does very interesting work, very nice theories come out
of it, and fortunately, technology takes care of the actual
problems. After I got interested in the whole field of
multi-stage decision processes, I realized quite quickly
that these problems were common to the field of englneering
in the way of control theory, and in the way of calculus

of variations. We had similar problems in the field of
economics, operations research, medical diagnosis, and
across the board. Multi-stage decision theory is one of
the most important mathematical theories as far as appli-

cations are concerned. There are many mathematical problems,

interesting for their own sake, in the field. So let me
now discuss the thing in an abstract fashion, introduce a

few bits of terminology, and then apply this technique to
| stochastic control processes.

We shall think abstractly in terms of the system.
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The system may be a satellite, a decoy, a factory, or
maybe a human being. A basic element of the theory is

one system. The standard technique for studying a system
mathematically is to introduce a way of describing it.

Let us introduce a state variable, a vector p which
usually depends on time t. For example, if we're talking
about a satellite, one state variable would be its position
and velocity at a certain time. It might be the amount of
fuel, and/or several other factors. For simplicity,

let's take time to be discrete -- t = 0, 1, 2, .... 1In
this way we eliminate a number of spurious problems con-
cerning continuity and differentiability; which allows the
principal problems to come out rather clearly.

One of the difficulties with the classical calculus
of variations is that an enormous amount of time is spent
worrying about existence and uniqueness of various types
of solutions, and very little time 1s devoted to such
questiohs as whether you can get at these solutilons 1if
they exist. If'we make time discrete, then we automatically
bypass all problems of existence and uniqueneés. We now
are dealing with the minima or maxima of finite sets of
quantities or with finite rumbers of possibilities.

Clearly, one paramount difficulty is whether we have
a feasible technique for obtaining solutions. This 1is the
important mathematical problem if you're dealing with the
physical world. Let us ask ourselves what happens to the
system over time. Assume that this system 1s stationary,
i.e., the mechanism doesn't change over time. The state of
the system changes over .time, but the transformation
whereby the system goes from a state p to a neighboring
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state Py 1s the same. Disregarding the decislon and con-
trol aspects, let's look at the classical description.of
mathématical physics. If we define the system by means of
a state variable, then we introduce a cause and effect
relation. If the system 1s in state p at time O, it will
definitely be in state p, = T(p) at time 1, where T is

a glven transformation. Now the study of phe system over
time 1s just the study of the iteration of this transfor-
mation: :

(1) p, = Tp,) = T%(p) ....

This 1s classical analysis, and 1t stems from the ideas of
Poincaré, Hadamard, Birkhoff, et. al.

We disregard the actual form of the equations for the
moment and see 1if certain properties of the transformations
lead us to certain cohclusions about thé behavior of the
system. Classical mathematical physics, iIn many cases,
becomes the study of the iteration of certain transforma-
tions. In this way, of course, you're led to the Ergodic
theorem and fixed point theorems, etc. It's a very natural
transition. Those of you who are interested in pursuing
some of this may refer to the book I mentioned before on
adaptive control processes, where you'll find some dis-
cusslon of thils, as well as some references.

Suppose we're interested in control theory. Not only
are we interested in studying the evolution of the system
over time, but because we're not satisfied with the evolu-
tion of the system over time, we will attempt to change 1t.
How shall we'portray,that in an abstract fashion? We can
think of control in the following way: The system 1is in
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state p. Control means that we have a choice of the trans-
formatiorn that we can exert upon the system. But usually
when we give something and take sométhing, there is a
certain cost. We may be able tc get more control and, say,
minimize the deviation from a desired state, but only at
the expense of additional cost in resources or time. We
have to balance the cost of control with the cost of devia-
tion from desired state. Symbolically, Biven a set of
transformations T(p, q), state S: p — Py = T(p, ql),
where q is the control variable.

For example, if we're talking about controlling a
trajectory, at each particular point our transformation
tells us where the particle will be at the end of a certain
time. One can think of q as the direction that we choose
at a given point. As a result of choosing q at one point,
we end up at a certain other point at the end of a unit of
time. So 1t's interesting to think of control theory as
a choice of a transformation to exert on the system at
each time.

It's also important to realize that the dicision to
do nothing 1s a very important one. That's also one of the
control variables. Many people, of course, think that
they're doing nothing when they make no decision. This
is a definite decision which very often is the worst
thing that one can do. Of course, one has to account for
the fact that very often you can be ruined by means of a
theory. One must balance these two ideas. It's important
to realize that, in many situations involving uncertainty,
you can only be destroyed by a theory. If you did nothing
and let yourself just be oscillated by random forces, you
know that after a large number of steps you're only going
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to be 0(Vn) from where you were initially, but if you have
a theory, you could be O(n) away.

We said control is the problem of choosing a trans-
formation. We choose qq and the state variable p and we get
p; = T(p, a, ). At p, We choose another control variable.

- and we get to Py = T(pl, q2), and so on. The control pro-
cess 1is then equivalent to a choice of the qi at each
stage.

The difference between a control process and an ordinary
process in mathematicallphysics is the following: In the
first place, we agree that we're just studying the behavior
of the system, not trying to alter it. 1In the second
place, we have no evaluation of the outcome of the system.

We don't particularly care what happens one way or the
other. In a control proéess, we have the criterion function

(2) R(pl) pz: LI J ql: q21 -'-.)o

We may want to get someplace as quickly as possible or
subject to minimum fuel, or we may want to keep the deviation
between what's happening and some desired state as small as
possible, and so on.

We care what goes on in a control process. The cri-
terion function (2) is some function of all the states and
of the decision, which makes things much too complicated.
To simplify the ideas, let's consider control processes
of the following t&pe: Assume that there's a finite number
of stages and that the criterion has the following form:

(3) R = g(pN).+ h(pl: ql) ‘+ h(p2: QQ) + ... +‘h(pn—l’ qn—l)

o4
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where g(pN) is some function of the final state. This

is sometimes called terminal control. In many situations
you don't care what happens during the process. You only
care what happens at the very end of the prbcess. For
example, with a certain amount of fuel, you may wish to
get to Mars. You don't particularly care what path you
take as long as you get there. Next, we assume that at
each stage there's a cost for the state and one for = .°
control. A typical example of this would be an economlc
situation in which one is trying to meet a glven demand.
Suppose the demand curve 1is as shown in Fig. 1.

Demand for
ServLCeS\, — - /

e TN
7\/4 ’\EmPloymehJC

//
Ve
v

Fig. 1

Let your control variable be the number of men employeed.
You have a cholce of hiring or firing men at each stage.

You try to follow the demand curve with your services, but
when you are above the demand curve, you must charge your-

self with having people whose salaries you were paying,
though they were producing nothing. When you are below,
you have to charge yourself for, perhaps, buying supplies
from a competitor at a premium price. So you have the
situation where at each polnt you have two costs, one the
cost of control, and one the cost of the deviation from

Ui
(1}



Dynamic Programming 9.

the state which you'd like to be in. This 1s typical of
control processes. Abstractly, the problem is

(4) Min R
[d10 920 93s --vs Oy

If once again we assume there are only a finite number
of values of p and only a finite number of values of q, a
finite number of states, and a finite number of control

variables, there is nocquéshiofi of lexistencé bf-the'solution.

We don't have to make any assumptions about continuity, for
the problem is completely a finite problem. We have to
take the smallest value of R from among, in most cases,

a very large number of possible values. If the number of
stages 1s large, and if the dimensions of q are fairly
large, 1t's clear that we don't want to tackle this problem
by enumeration. On the other hand, we don't want to tackle
it by calculus because, in many cases, the functilons are
too complicated or the q's are discrete. For example,

each q may just have the values +1 or —lﬂ We must do
something better. We have to have an algorithm which re-
duces a multi-dimensional problem to a sequence of lower
dimensional problems. Looking upon the problem as a sequen-
tial problem, we want to make our decisions in sequential
fashion corresponding to the actual control problem. The
minimum depends upon two quantities, the initial state

p, and the number of stages. )

(5) Min R = fy(p)
- [ql} Q2J q3’ ey qN]

Of course, it also depends upon the forms of the functions,
but they don't change. They are given to us. The only
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things that change as we go along are the current state

and the number of stages remaining. We could write the

functional dependence as f£(N, p), but we usually use dis-
crete numbers as subscripts.

We shall now use the method of continuity comparatives.

To illustrate the alternative methods, consider the following

case: If you were studying rellgion or linguistics or
anatomy, there are several ways of proceeding} First you
can take an individual religion or individual language or
an: individual organism, and you can study this very com-
pletely, making a detailed, isolated study. On the other
hand, you can take a family of related objects and trace
the transitions as the organisms increase in complexity.
It's very often much easier to understand a very complex
organism as a limited form or as a sister form of other
organisms than it is to understand the organism in isola-
tion. This is the very important comparative method.

In mathematics, the method of continulty says that
if you want to study a certain object, put it in a family
of objects and go continuously from a member of the '
family that you understand quite well to the member which
you don't understand initially as well. And by tracing
the properties of the object in a continuous way, you can
explain the properties. of the desired object. This is,
generally speaking, thelimbedding technique. If you want
to study a particular problem or a particular process, you
must imbed it in a family of similar processes, and you do
it in such a way that you have a very simple transition
from a simple member of the family, which you understand,
to the more complicated member.
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In the present case, the simplest problem is the single-
stage process. We bypass the multiéstage aspects, and find
1t 1s necessary to make only one decision. We wish to go
stage by stage from the one-stage process to the two-stage
process to the three-stage process, etc. Of course, the
Tundamental observation is that, in-a process of this
‘type, if we start out initially in an N-stage process,
aftér one decision, we're going to be in an N-l-stage
process. So we have a simple way of going inductively
from N to N-1, a sort of backwards induction.

We must make some initial decisilon, the choice of qq-
That's golng to cost us some function of the initial state
and the inltlal decision. Now we have N-1 stages remaining,
‘and we're in the new state P, = T(p, ql). It's clear that
no matter what state we're in now, and no matter how many
stages are left, we're going to proceed so as to minimize.
This 1s just an extension of this geodesic property dis-
cussed earliery The tail must always be optimal. This
is worth dignifying under the name of the principle. I
call it the Principle of Optimality. (Optimality is not a
good English word, and therefore, one can use it freely.)
The tail of an optimal policy must itself be an optimal
policy with respect to the new state. It 1s the property
we've used over and over again. Regardleés'of what'qi is,
what remains must be the minimum. We continue in a minimum
fashion. | '

The question 1s how to choose ql. We must choose Q
S0 as to balance the cost Incurred immediately, and the
cost incurred over the remaining N-1 stages. Our functional
equation is \

o8
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(6) Min [g(p,) + h(p, a;)] = £;(p)
91

fy(p) = hlp, a;) + £y, (T(p, ql).) N >2.

This is our general abstract formulation. We still haven't
defined what the states are. They could be finite dimen-
sional, infinite dimensional; they could be probability
distributions, as they are in many cases; or we've said
that, if a system is specified'by a state, a decision 1is
equivalent to a change of that state, and at each stage

we Iincur a certalin cost which depends upon the state and
the decision which is made. We have decomposed a multi-
dimensional problem into a sequence of one-dimensional
problems. We make only one declision per stage.

Of course, this is telling us more than we ever wanted
to know, because we only wanted to solve one problem. Now
we have to solve a whole sequence of problems, not only a
sequence of problems in N, but for arbitrary initial states.
The answer to that is that most often in englineering problems
you want a sensitivity analysis. The solution to (6) is
just the information that is desired. It tells us how the

minimum cost varies as a function of the initial state and
" the number of stages.

Let's Introduce just two more terms. The policy
is what we do in terms of where we are, The policy 1s a
set of functions which tells us what we do in terms of the
state and the time remaining. An optimal policy is a policy
which optimizes. It provides the minimum cost or the maxi-
mum return, etc.

There is another interesting consequence of thinking

39
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in terms of policies as functions. For example, suppose
we want to compute the minimum time required to reach the
“origin from 1 some point in phase space. In thils case,

we get an equation like (6). The minimum time 1is the time
'fequired to go someplace as a result of the first decision,
plus the mimimum time required to go from the new point.
This 1s the geodesic property. If we have an equation
like (6), we don't have the recurrence property that we
had before. So far, we have spaken in terms of problems
where ‘we started with a known function. Wetthen used .the
functional equation to get the second and third functions,
and by simple repetition of iteration, we arrived at a de-
sired solution. Now we have the unknown function on both
sides, as in the optimal routing problem discussed earlier.

There are two procedures to handle this case. One is
approximation in function space, which proceeds in the following
way: We guess an initial function fl. Then we compute fé.

Next we iterate over the functions. This is what is known
as successive approximations, but of a very special type.
It!s successive approximations in function space. We

can proceed in another way, giving equal,emphasis both to
the Teturn function and to the policy function. One deter-
mines the other. If we have the equation

(7) £(p) = Min [n(p, a) + £(T(p, a))],
: . q

then a choice of g, q(p) tells us how to proceed. On
the other hand, once.we have f; then q i1s determined as
the function which minimizes (7). So there's a duality
between the two. This 1s a more general version of this
Euclidian duality which I mentioned before, the locus of
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points - envelope of tangents duality. We approximate
either in function space or in policy space. Approximation
in policy space goes the following way: First I guess an
initial policy qo(p). Then I determine the return from

t

- the policy.

(8) folp) = h(p, qy) + £,(P(p, a4))

h(p, ag5) + h(T(p, a5), q5) + ....

- In other words, I get the return by just iterating, assuming

I'm doing the same thing at each stage -- picking 9, to
be qO(p). Next, we find q; as the q which minimizes

(9) n(p,.a) + £,(T(p, q)).

This says I'm going to approximate in policy space in the
following way: First I will pick a policy which I'l1l
call A. I just apply A over and over again. If I know at
a glven stage that I'm going to apply A over and over
again, which gives me a certain return, what should my
best first policy be? The answer may be to apply B first.
Then I ask what the best second policy is, knowing that I'm
going to first choose B, followed by A over and over. The
answer may be B. But now I return to the question, if I
apply policy BBAAAA..., is there a better first policy,
say, C? In this way, the initial approximation slides
away to infinity, and you end up with an optimal approxi-
mation.

This is quite different from the usual approximation.
You're not Just approximating in function space, but im-
proving the policy at each stage. . It can be shown that
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thils gives a monotone approximation. Thus you can improve
upon anybody else's policy at very least. This 1is an im-
portant point. In choosing q, so as to minimize (9), if we
choose the value of q before choosing qo, we get back our
old function. If we choose the minimum q, we have some-
thing definitely less. I would like to emphasize the im-
portance of the policy. It isn't so important in deter-
ministic processes when one can use conventional represen-
tations, but for more complex processes where one might
not be able to describe the problem in conventional terms,
then a policy is still sensible. This leads to something

I want to mention briefly without going intc. Once we have

described the policy, i.e., we have specified the type of
control policy we're going to use, theh, even though the
concept of a return function ﬁay not be meaningful because
we may not know cause and effect well, we can carry out
either in real life or with analog or digital computers
the simulation processes. We can ask what would happen

if we used this policy or another one. Of course, this 1s
Just exéctly what is done in real life sltuations all the
time. People test out policles which are sensible even

in situations in which they do not have any analytic
formulation of the problem. -

The concept of a policy trmendously extends the scope
of mathematics. Conventional mathematical techniques will
not carry over to most real life situations, but we can
still construct simulation processes, think in terms of
policies, and extend the scientific method, if not the
purely mathematical method. A policy will very often be
a simple thing, whereas the analytic solution may be com-
plicated. This 1s more often the case than not. For

example, in courses on differential equations, you have

b2
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the following problem: A rabbit is at R, and there's a
dog at D. The rabbit is going in the x-direction with
a certain velocity, and the dog is constrained, 1.e., its
policy is always to point at the rabbit. The question:
What is the dog's trajectory? It is the curve of pursuilt.

D
D03 \
AN
~
N
N
N
N R

Robbit

Fig. 2

This is an extremely complicated expression analytically.
If you add a few more assumptions, you can get to the point
where the differential equation cannot be solved explicitly.
The actual analytic form of the curve can be quite compli-
cated, but the policy 1is very simple. This simple pointing
technique 1is used for actual interception problems.

Stochastic Control Processes

The word stochastic replaces the old word random.
Random is a very bad word because the mathematical definition
of random is almost exactly opposite from the definition
implied by the ordihary English usage. To illustrate: When
you tell a person you're doing things at random, it
means there's no laW, rhyme, or reason behind it. When a

63
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mathematician says he's picking a number from the interval
[O, l]svhe means he has a distribution, which is to say
that if you pick a large enough sample you’re'going to

see a great deal of regularity. So the English usage is
quite different from the mathematical usage, and for that
reason, for example, if you ask a person if 0.121212121

is a random number, he will say it isn't since it has too
much regularity. Mathematically, of course, 1t's a per- '
fectly good random number and has as good a probability

of belng chosen as any bther nine-digit number that ybu :
can think of. Thus, instead of random, people use the word
stochastic. Stochastlc doens't occur very freQuently

in cocktail conversation. ¥ou can‘t turn to the girl next
to you and ask;, "Did anything stochastic happen to you last
night?" She might slap your face! '

Stochastic comes from the Greek word EZTCDCC7§,_meaning
"a target". Shooting arrows at a target was a haphazard
affair, and so from that you have the word stochastilc. We
deal with stochastic processes because we don't know how
to make them deterministic. This is a point which 1isn't
emphasized sufflcilentiy. Probabiiity 1s a very peautiful
device for getting around ignorance. Naturally you would
like to get rid of probabilistic considerations whenever
you can. The simplest example of that is tossing a coin.
Theoretically, when you toss a coin, if you know the angle
of inclination and the force that you give it, the elastic
properties of the fldorg etc., you should be able to predict
whether the coin will come up heads or tails. But it's a-
highly unstable situation. 'We know that the slightest
difference in some of the initial conditions or the environ-
mental properties will change a coin from falling heads to
falling tails. Theréforé, in situations like that, we

o4
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fall back on random variables. We assume that we have a
coin -- heads is O, talls is 1 -- and we have a certain
probability p.

The meaning of this is completely clouded. Nobody has
the faintest 1dea how to do probabllity in some satisfying
way, unless you do 1t 1in an axiomatic way. When you try to
make 1t senslble, you get into the following difficulties:
What is meant by a coin that has a probability p of falling
heads? It means that you keep tossing this coin a large
number of times, and you get various sequences. If you toss
it lO6 times, there should be approximately p x 106 heads.
But if you toss a coin 10  times, how do you know you're
tossing it in the same way each time? After the coin has
hit the floor 106 times, you don't have the same floor or
the same coin. You're not performing the same experiment,
which means that if you try to set up this concept of pro-
bability on a very common sense experimentél basis, then
you get into complete paradoxy. Suppose that even after
you did 1t 106 times, you found 107-1 heads. Should we
assume that the coin is very heavily loaded? Either 1it's
very heavily loaded; or else 1 have a very unusual sequence
from a fair coin. How do I know? That's a higher proba-
bility. You Jjust keep pyramiding these difficulties.
Consequently; people fecognize all this. But let's start
the whole thing over again from an axiomatic basis, exactly
the same way that we do in geometry. We set it up on an
axiomatic basis and leave it to the risk of the user as
to whether he believes that any theorem which is sensible
for a triangle that I draw on the blackboard‘is sensible for
a triangle on the surface of the earth, etc.

The big problem in the use of probability is not

e
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what you can do axiomatically and analytically, but whether
the hypothetical situation has any correspondence with
reality. Most of the time it doesn't! Most of the appli-
cations of statistics are completely spurious and open to
many Interpretations. You have to view them with the
greatest possible care. If you are working for a cigarette
company, you could easily get statistics that would prove
conclusively that smoking 1is good for you. The Atomic
Energy Commission, I'm sure, has experts who could pro-
duce testimony to show that fallout is good for you. You
Jjust pick and choose very carefully, and you can prove
everything by means of statistics. You remember the famous
remark of Disraeli, who said that there are three kinds of
lies -~ lies, damn lies, and statistics.

Consequently, I would like to warn you in advance
that whenever YOu use probabllity theory, you're treading
on very dangerous ground. You have to be very careful that
the whole process is meaningful., . You find people talking
very blindly about the probability of war. This is a
complete misuse of the concept of prbbability, either in
practical terms or in the axiomatic sense. Probability is
Just thrown around very loosely.

We will introduce stochastic control processes from
a purely mathematical, axiomatic point of view. Whether
they have any relévance to anything that goes on in the
real world is another matter. You are now forewarned as
to the weaknesses and flabbiness of possible probability
theory. I hate to disillusion you, but it's necessary
that you know how dangerous it is to apply mathematical
techniques to engineering problems. This is why experience
and intuition, when combined with intelligence, are very
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useful. Unfortunately, most of the‘time we have a dichotomy —
intelligence without experience, and experience without
intelligence. Naturally, there's very little communicatlon
between the two. But as far as the engineering world 1s
concerned, and certainly the economic world and more

difficult worlds outside of those, mathematical methods

should be used with the greatest care and caution, and

nobody should ever take too seridusly the results of

analytical calculations. |

One has to be very careful before he extrapolates
from the many assumptions that go into writing equatilons
to any realistic and complicated system, regardless of how
many digital computers are there to testify as to the fact
that these numbers were actually computed. The use of
the digital computer is like the gun on the wall of the
big game hunter. He says, "If you don't believe my story
about shooting the rogue elephant, I'li show you the gun
that did it."
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Feedback Control Theory

Today I want to talk about feedback control, starting with deter-
ministic control processes and going on to stochastic control. Yes-
terday I warned you about the dangers, fallacies, and weaknesses of
the calculus of variations. Although we would like to make use of it
in computational schemes, usually we can only use it as a purely
mathematical tool.,

The concept of feedback control is & very interesting one and
a very fundamental one. It is probably the most fundamental single
scientific concept, because it cuts across fhe fields not only of
engineering and economics, but also the fields of biology, medicine
and psychology. More and more we're going to find it as one of
the unifying concepts of science, and when we get more into mathe-
matical biology and look into the functioning of living organisms,
we're going to find that the feedback control concept, allied with
this word homeostasis, namely the desire of the organism to keep
itself the way it was, at the status quo. This is one of the
guiding scientific principles. It is very interesting that
mathematical techniques designed to handle quite specific problems
in one field prove to have much wider validity and can handle prob-
lems in other fields which are superficially quite different; but
ebstractly and intrinsically exactly the same mathematical problem.
For those of you who are interested in biology, psychology and
medicine, it should be pointed out that the ideas that will be dis-
cussed in what follows have immediate application to these areas.
And of course, as I mentioned at the beginning of the first lecture,
in my opinion they‘re infinitely more important and interesting but,
fortunately, science is a matter of taste.

Consider a system, the state of which we specify by a vector p

at time t. Under time, p goes into a new state T(p) if it's uncon-
trollede.

~i
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State S: P — Py = T(p)

If we exert control, then a system at state p under the influence of
the control variable q goes into a state T(p,q). Abstract versioms of
this have recently come into some prominence. These are called se-
guential machines. Logicians are fond of them. There will be a cer-
tain flurry of interest in sequentiel machines - probably about 273
papers written - and then the field will die down, because there are
no numbers attached to it. It would be interesting to make a cowunt
and see how accurate the number 273 is. Just in the last year or

two people in logic have begun to realize that these general systems
can be put into abstract format. But as I say, the weakness of that

abstract format 1is they have not considered the numerical problems.

Consider a very simple one-dimensional case. Take a system S at
time n, where time is discrete, and let the state be u (n =0,1,2...).
Assume that at a time n + 1, the state is a certain function of the pre-

vious state and the control.

(1) Wy =g(uh, vn) vwhere v 1is the control varisble.
Suppose the system is originally in the state c. Everything is now
cne-dimensional. We can let all the variables be discrete if we wish,
and as I say we can then avoid many of the sophisticated concepts of
continuity, the question of existence, and of minimum and maximun
values, and so forth.

As usual we assume that the criterion function is scme function

of the terminal state plus a sum of the costs incurred at each stage;
N-1
2) =
( ) R K(un) + /?g?(uk’ Vk)

The cost incurred at each stage is a combination of some function of

-1
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“he state variable and the control vector. Let's give an example of -
tiine B se I have a linear system
{2 = = - . =
u au + v =C
(2) n+1 n .7 0
where we start the system at state ¢ I our objective is to keep it

in a state b, we can say that at each stage we have a cost cf deviation
2 2
(uy - b)° and let's say we have a cost of control )tv . We'll assume
that the cosis are additive, so our criterion Iunbticn becomes
N-1

“ 5 (o A

k=0

We heve no terminal cost.

This is o typical guadratic control process. It is an interesting
one because it can be solved explicitly in several different weys; we
ray have time to come back to it later. Let's talk about the general
case of which this is a particular exemple. Suppose our problem is
to minimize the criterion function R over the choice of control v.

1 don't have to specify whether I'm using feedback control or whether
I'r. operating sequentially or whether T want to change all the v's

at one time; it doesn't meke any difference. Here we have a deter-
ministic process. 1 emphasize this point now, because it will meke &a
big differerre when we talk about stochastic and adaptive processes.

fere we can say we are concern2d with & deterministic process; we

an thinii of It as one n-dimensional problem vhere we choose Vas Vqp ¢ e oe
up Lo v l'at one time cr we can think of it as & seguentisl pro-

L -
cess where we choose first Vo then vlf then Vo) and so on. If we

use - the dynamic programming epproach, we say the criterion function

(5) Min R = £(c)

]
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is a function of the number of stages N and the initial state ¢ and

we get in the usual way
(6) fy(e) = Min [ne, v) v gy eles v ) w=
140 =g 16, ) + % s 0]

This is a feedback control problem. Equation (6) is the dynamic pro-
gramming formulation of it. We have reduced the problem to a sequence
of one-dimensional problems rather than one n-dimensional minimization
problem. The advantages of this are that we very often have a superior
analytic technique; in most cases we have a superior computational
approach. We don't have to let v be continuous; we can take vo = ¢ 1.
That actuully cuts down on the computational time. We can thus take
edventage of all kinds of realistic constraints, realistic functions,
and we do not have to tailor them so that they obey some particular

analytic criterion.

Stochastic Control Theory

Let us return to the original problem (2), and ask what have we
assumed? We've tacitly assumed the following: a) we know the initial
state precisely; when we say it's ¢, we mean it's c; b) cause and effect
are exact if we know the initial state and we know the initial control
variable; c¢) the control is precise. We know the subsequent state
exactly and we also know exactly whet will happen when we exert & con=-
trol vn, In other words, we choose a value v, and We assume that's
exectly what goes into the system; d) Finally, we have assumed that the
criterion function is precise. Of course, in any actual physical
system, none of these holds. We never are able to measure the state
accurately, it's a matter of percentage error; we never can take account

of all the different causes. Most of the time we don't even know many

T3
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many of them, and we don't know the effect of those we know precisely.
Also, we never really know what happens when we choose a control
variable. You might want a rocket to burn up at half maximum rate;
it may be burning at half maximum rate, or it may not be burning at
half maximum rate.

We have ignorances in each one of ‘these four areas. The standard
way of getting around ignorance is to assume that we can replace an
unknown effect by random variables. And what we assume is that it's
perfectly permissible then to introduce a random varisble and take
averages. This is an assumption. I keep insisting that you have to
be very careful and make up your mind vwhether you want to take this
very seriously. I say this because, unfortunately, in so much of the
work that's done this is never mentioned. People assume that all this
is on a completely rigorous basis ~- not only rigorous mathematically,
but rigorous scientifically. Whereas, the major problem is always to
make sure that the physical situation is a good fit to the axioms that
you use mathematically. This is® part of the use of mathematics in

science. You have to worry about this. Too many people do not worry
about this.

Iet's take the very simplest situation. Let's assume that we're
now considering stochastic control, that the state at time n + 1 is &
function of the state at time n, the control at time n, and a random

influence at time n.

= u r =
(7) Yno+1 &l n’ 'n’ rn) 3 Uy =€

Let's simplify existence and assume that everything has been scaled
down to the point where r, at each stage is + 1 with probability
P, 1 - p; respectively. This is perhaps the simplest kind of random

variable and it illustrates all the complexities very well. Our cri-
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terion function is

N-1
(8) Ry = K(ug ) + ) nlw, v) .
=0

We've assumed that we know what our criterion is; our criterion may

have random effects in it too. Let's assume here that it doesn't.

The first problem we face, interestingly enough, is what we me&n
by a control process when we have uncertainty. There are two parts
to the trick of probability. The first part is to say that we replace

ignorance by knowledge. We don't exactly know what L is going to

be. If we know u, and Vn’ the first part of the trick.is that we
circumvent that by introducing 2 random variable which can be +1
with probability p, and -1 with probability l-p. So instead of
complete ignorance, we say we'll try the one value or the other, and

on the average, we know what the values are going to be.

The second gquestion is, given this situation, how do you evaluate
the outcome? The second part of the trick is to use expected values.
In other words, we're going to use some average outcome, and we're
going to evaluate the performance of the system in terms of the
average outcome. As we do in baseball, we don't expect the pitcher
tc win every game or the team to win every geme, or a batter to make
a hit every time he goes to the plate, but we do evaluate their
performance in terms of batting averages, team averages, etc. This
standard technique is difficult to justify in many cases. Monday
morning quarterbacks aren't interested in football coaches who say,
well, my expected performance would have been excellent; we just
had a few misfortunes, a few touchdowns here and a few touchdowns
there.

If you're only interested in doing something once, such as
surviving an H-bomb attack, you’re not interested if somebody says
your probability of survival is 0.9, because you worry & little bit
about the remaining O.l. In other words, one has to take this
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application of probability theories with a grain of salt and make up
your mind when you're interested in expected values and when you're
not. It's clear that if you're going to do the same thing over and
over and over again then the expected value means something; you
have some general theorems in probability theory that tell you that
if the average value of a random varieble is p, over & long sequence
of runs you're going to see approximately p of those values. Once
again without worrying about whether one can use that in any particular
situation, we're going to think in terms of expected values. We
have to because nobody knows any better way for handling probability.
Of course, the expected values need not be just the first moment.

It can be the expected value of some function of rn. Thus, we can
also handle problems such as === what is the probability that rn
exceeds a certain value? This is also an expected value. It's

an expected value of & function of To. But, there is no way around

dealing with expected values once you introduce probability theory.

So we agree to two things. We've introduced the idea of random
influences and we're going to deal with expected values. To simplify
life, let's say that we're going to minimize

(9) Min Exp RN

NG

This sounds like a sensible problem. The point is, the problem is

°

not defined as yet, and +thus is meaningless. This is the amusing
point. In the deterministic case I could set down the function

Rn . I want to minimize it and not specify that'I was talking

about feedback control. The problem is well defined. As soon as we

get into stochastic processes, you have to make the rules quite precise
before you know what the problem is.

<
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Let me point out two ways in which we can proceed in this case.
To minimize the expected value of the RN over the v's is not & precise
vroblem. Let me point out two distinet types of problems that we
could think of. The first I'll call non-sequential. Here we would

choose Vor V . + . ahead of tire; for any such set of values,

1,
compute

ke

By

—

E
|
X

and then minimize over the v, In other words I say one way of
carrying on a control process of this type, is to say I'm going
otV ahead of time. For each
one of these choices I now compute the expected value of RN over

to pick my numbers Vo V

the r's. What I have left is a function of the v's. I now minimize

in the usual way.

This is a meaningful engineering nrocess. It corresponds to
a situation in which you kncw that the system is going to operate
in a certain way, you know the initial state, but you have no way
of observing the system, once it gets started. If you have no
way of observing the system, once it gets started, obviously, you
cannot use a sequential process. So this is & meaningful process,
in those situations in which you can obtain no information as to what
the actual state of this system is, once you have started the control

Drocess.

Fortunately, in most cases, we can observe the state of the
system. Then we proceed in the following way: Choose Voo observe Uy,
choose Vys observe Uss o v o This is & sequential or feedback

control process.
Which one of these will yield a smaller velue of the minimum?

Ooviously, the latter will, becéuse nonsequential control is a

subclass of this type. You can always exert nonsequential control.

4
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In feedback control we have more information and we can expect to
do better. But, as I say, unless I tell you what the rules of the
game are, then, (9) is a meaningless problem. I have to tell you
vwhat inclination you're alloved at each stage.

This brings in a very interesting idea which we'll discuss later.
That is the fact that as soon as you get to stochastic and adaptive
processes, then the information pattern becomes important. What in-
formation do you have about & system at a particular time? This is
something which doesn't enter at all into the deterministic case,
because you tacitly assume that you know exactly what the behavior
of the system is going to be. From a mathematical point of view,
this means that stochastic and adaptive processes are infinitely more
interesting. There are many more variations. I'1ll discuss some of
them. We want now to consider (9). If I now say minimize over v, the

feedback control,

(10) H Exp Ry

I have & perfectly well defined process. Notice that as far as the
sophistication of the prdblém is concerned, (9) is a lower level problem;
it is a problem in calculus. We have to choose n-1 variables. (10)

is & much more sophisticated problem because it is a problem involving
the choice of n functions. We have to choose a policy. We say that
once you have observed w5 what should vy be as a function of ul?

uy will automatically be a range of values now &s & stochastic
variable; vy will be a function. In other words, in (10) we must

make a choice of N policies. 1In solving the feedback control

problem we have to choose 2 point in N dimensionel space. However,
although (9) is & much more elementary problem, (10) is a much easier
problem to tackle. And the easier problem is the more important
scientifically. There's a moral attached to this: complexity does not
necessarily mean scientific importance. And very often, complexity
and obscurity are just smoke screens to disguise the fact that there's

very little there of scientific or intellectual interest.

T3
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Let us consider the feedback control problem in more detail. We
proceed in exactly the same way as before. We say, clearly the minimum
value over a feedback control process of the expected value over r

depends on the initial value.

(11) Mip Exp R, = fN(c)
f

It is a function of the number of stages and the initial state. Let

us determine the corresponding recurrence relation. If we pick v., we incur

0

immediate cost of h(c,vo). As a result of v, we're going to be in a

0
state g(c,vo,ro). Regardless of what state we're in, since rO is a

random variable, it will be in one of two states. We're going to use
the optimal continuwation. We take the average value over the optimal

continuations, of course. 1In this case the average value is Just

(12) f(e) =rf,ﬁn Lh(c,vo) + lﬁfrp fr.q(ele,vory) )] N2
v 0
fo(c) = Min h(c,vo) + Exp k (g(c,vo,ro) ) }.
VO L ro

These are our fundamental recurrence relations.

It requires a little bit of practice to juggle the minimization
and the expected value in the right order; you have to think it out. 1In
fact, you must read it backwards. First I choose Vo vhich means I'm
going to be in state gic,vo,ro). Whatever state I'm in I'm going to
use an optimal policy from that point on. So, the return from any
new state is going to be fN-l of that. I don't know which one of these
I'm going to have, but I average over the possivilities. fo is then my
return. It's an average return. I now Jjuggle the cost of the initial
decision versus the cost of the remeining decisions. You have to play
with these things for a while before you get confidence, and then it's
very easy to interchange things and say, why don't you take the average
value inside, etc. But we have to think of the process. As I pointed
out yesterday, a certain amount of thought is necessary. This is

gocd. for one, it shouldn't be over done,

‘3
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but & little bit never hurts. Let's take a specific example which mey
clarify things. Consider the simple linear situation

(13) Yhey © au, * Vh

And suppose my problem was

(ll#) Mi:ll'x E;cp %[(uk - b)2 + ;\-Nil vi] = fN(c).
F.c. 0 k=0

Then

(15) fN(c) = Min [(c-b)2 + Ay 4+ pr(ac-Pvﬂ.) +

(1-p)fy(actv-1)],

and

(26) () 15 flem e 105 vy [songna] 2
(1-p) [actvy-1-d] 2})

where we have assumed that the function is Jjust another constant.

For those of you who would like to do a little algebra
and elementary calculus, let me pose the following problem:

Take the deterministic case first where

[Py
C,
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(17) W = eut v
N N-1
min 2 2
with ,; Y (u -1)"+ A Y vl = fle).
v | & & k N

L

Prove that fN(c) is a quadratic function of c---in other words, it

has the form
2
(18) fN(c) .—.O(N +BNC + 7Nc .

Using the functional equation, derive recurrence relations for 04 N’
/3 N’ 7N and show that optimal control is linear, i.e.

P

(19) Yn = On Yn * €n

This problem is discussed in Applied Dynemic Programming, referred

to earlier. Do the same for the stochastic case. If you work
through the details of this you will have some feel as to how these

technigues can be used.

From the conceptual analytic point of view, the above approach
gives us a uniform method for the treatment of both deterministic
and stochastic control processes. We see that conceptually there's
now no difference at a2ll between the two; the concept of an optimal policy
is exactly the same; each v, = vk(c) . An optimal policy now is,
wvhat control do you exert in temms of where you are? When we get
into stochastic control process, you will see that we're talking in
terms of feedback control. This is the way the solution has to be.
Notice that the two techniques, the two epproaches which were identical
for deterministic processes, namely, either choose the control values
all at once initially, or choose them sequentiall:}, are guite " .
different at the present time, and they represent quite different

physical situations. As I pointed out, the 2 priori choice

81
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is what's forced upon you when you have no way of determining what the
actual state of this system is once you've proceeded with the control.
On the other hand, the feedback control method depehds upon the fact
that you know the state of the system at each time.

A very interesting type of stochastic control process is one
which we call interruptive control. Suppose we're controlling
system (17), and suppose it really represents the behavior of a
satellite. Assume that the communication link breaks due to
interference at a certain time. You don't get a reading of the state
variables. And now suppose that you know a priori that this is going
to occur with a certain fixed probability. How do you control the
system under such circumstances? We call this an interruption of the
control process, and you see what I mean when I talk about the
richness of stochastic control as opposed to deterministic
control, because now you can take all the possible calculus of
variations, all possible control theories, and systematically
say, "Suppose I only know this with a certain probability. Suppose
my information about this is lost or destroyed or interrupted.
Then what do I do?" BEach one of these problems is completely
meaningful as far as an engineering process is concerned. Those of
you who are further interested in stochastic control processes, I

suggest that you look at Adaptive Control Processes: A Guided Tour.

There's a much more detailed discussion there, and many references.

€3
h
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Speaking in inprecise terms mainly because there are no precise
terms, an adaptive process is a process in vwhich you have to learn
about the system as you go along. We could really use the word learning
process, but the psychologists have preempted that word. How does
en adeptive process arise? I mentioned previously that feedback
control or the feedback process is one of the most fundamental processes
across the scientific board. More and more in the fields of biology
and psychology, for example, people realize that there are all sorts
of processes that formerly have been looked at in a rather mystical
way but are just very simple examples of the feedback concept.

Learning, for example, is one of these.

Let's consider the following quite precise process. Suppose I
give you the stocastic process
"

(20) W= g(un, A rn) y Uy =c
with T, = + 1 with probebility p and 1-p, respectively.

I can set up the criterion function, and after I've done all that I
say that, incidentally, I don't know the value of p. I give you
(20), a very precise formulation, and then I say, &as a postscript:
P.s., p is not known. Now, of course, a strong tendency is to say,

I don't admit that as a mathematical problem. I Jjust refuse to deal
with problems of that difficulty. But unfortunately in many applications,
in engineering, in economics, in Biology, this is the situation you
face., As a matter of fact, this is a very simplified version of the
situation you face. I want to talk about the more realistic aspects
as we go along. You have a perfectly precise formulation a' la
classical mathematics, and then it twns out that you don't know

certain paremeters or certain functions.

53
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If you're a mathematician, you can just say "improperly posed,"
and you throw it away. If you're an engineer who has to construct
a satellite or a spacecraft which, let's say, has to steer through
an unknown atmosphere or will go out into regions of space where
one doesn't know certain constants as well as one woﬁld like to know
them, then you're faced with this problem; somebody says, I want to
go to Mars or Venus; it's not for you to question why; Jjust accept
it. You look at the astronomical tables and it turns out that cer-

tain values of the parameters aren't know. What do you do?

You would say the following: if I'm going from, say, Terra to
Mars and if I know how to get out just so far, of course I have many
different paths. Let's assume that when I'm out in space I have
instruments aboard my spacecraft which will enable me to take measure-
ments much more accurately out there than from here, so that I can
determine those unknown parameters. In other words, I have a con-
trol process in which I'm going to have to steer the ship. Also
at certain stages I have inputs of new data.l must learn and do at

the same time. This, of course, is a typicael situation in. life.

The second example is a person who is in charge of an Air Force
depot. Suppose you had . to store spare parts for & new plane.
You cannot follow the obvious policy of saying let's order several
thousand of these and several million of these, etc. That's rather
expensive, and 5 or 10 years later, someone is going to look over the
sitvuation when you have 95% of this left over and 85% of that, and
say, this is too expensive. The question is, how many spare parts do
you order? The number of spare parts should depend upon the demand.
If you're in a well esteblished industry, you have a nice distribu-
tion of demand which says expected demand is so large and there is
an expected probability of lower demands or excessive demands. The

exercise in probability theory is to determine how many you should

order so as to minimize your expected cost.

G.
Ha
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If this were a multi-stage process, one could use dynamic program-

ming and get into what's called inventory problems.

Suppose you have a new item. You don't have any previous de-
mand curve. You have to stock a certain number of parts, observe
vwhat happens over the first month or the first year and on the ba-
sis of that improve your estimate of the demand curve. You keep on
going in that way. This again is, of course, & typical situaion
in industry. As technology is changing tremendously rapidly, you're
constantly in a new situation where you don't have experience to guide
you as to what your probability distributions are, but you have to

learn as you go along.

Another example of this is in connection with our missiles.
Missiles have the peculiar property, because of their electronic
gear, of falling into disrepair while just sitting there doing
nothing. This means that people have to go around and look at them
from time to time. Ideally, if you want to make sure that the thing
is working, you ought to look at it all the time. While you're
looking at it, it is operative and workmen will demand at least
double pay if there is the probability that the thing will be fired
while they're watching it. So, if you're turning out new devices
like that, you have to determine what your inspection policy should
be, on the basis of starting to inspect it and seeing what happens
as you go along. There is no well extablished curve of what the
probability is that something goes wrong.

In a period of rapid acceleration of technology where we're
using new devices all the time, the really significant processes
are the adaptive processes. It's rather interesting that the mathe-
maticians, and the engineers, and the people in economics and his-

tory; and the scientists and the people in biology have finally
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accepted the fact that the basic problem has always been this. We
really have been in the situstion of the people in "The Emperor's
New Clothes." For hundreds and hundreds of years, these people have
alvways assumed, first of all, that the systems were perfectly deter-
ministic. Then finally, with much bitterness, they've brought in
stochastic systems, and finally they're beginning to admit that the
real problems are adaptive. The real situation is that you never
know as much as you want to know about & complex system, but that

you learn sbout it in the process of using it.

The flexibility of the feedback concept is absolutely essential.
You say that you keep yourself in readiness to change; what you're going
to do is dependent on what happens. In the world of biology, you can cite
many examples of organisms which survive because they do have the
feedback potential. Other organisms perish because their policies were so
rigid *%that they had no way of adapting to new circumstances. Talk-
ing about those 1lines, you know, it's important to give up the
phrase about the dinosaurs being a very unadaptable group. One should
remember the dinosaurs existed for about a hundred million years;
we've existed for about 5,000,000 years at most, and certainly maybe
in only conscious form for about 15,000 years. So before we sneer
at the dinosaur for not being able to adapt we ought'to at least
get past the next 50 years.

Another very interesting example of an adpative process occurs in
the field of medical diagnosis. Here is the situation: you go to
a doctor; you say, I don't feel well. He performs a certain number
of obvious tests, gets a certain mumber of reactions, and mekes a
certain number of prescriptions; they give you a shot of this or a shot
of that, or some aspirin, etc. Then he waits and sees. At the end

of a day or ‘two, or when you complain next, he looks at the situation
agaein. And so on.
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One further exemple of an adaptive process is the use of new won-
der drugs. Suppose you have a drug which has never been tested before.
The probiem that a doctor has is: Should he prescribe something he
knows will work with a certain probebility, or something which is
reletively untested? It may not work at all - it may work very well.
The experimental implementation of new drugs is & very interesting'
process, which is an adaptive process.

.

As a matter of fact, this problem was first thought of in about
1932. The person who worked on it was an expert in biological med-
jcal statistics and he discovered sequential analysis. He realized
that if you're going to try & new drug rather than the standard,
prosaic technique in which you take a hundred cases here and a
hundred cases there, what you ought to do is take ten cases or twen-
ty cases, one with the new drug, one with the control, and depending
upon what happens, change the size as you go along. He discovered
sequential analysis and then he decided that the mathematics were
too complex so he devised Monte Carlo techniques; in order to test
this. This was in 1932. Unfortwnately, he was 14 or 15 years a-

head of his time and so his work went completely unnoticed.

It's rather interesting to see that many of the basic problems
of scientific life are adaptive processes. The challenge is, 1if we
face thet much uncertainty, do we have techniques for handling it?

I tointed out previously that prcbability theory was a very ingenious
way of circumventing the fact that if we're in state w and if we
apply control v, ve don't know what the state is going to be. The
simplest examplé is to %ake & coin and toss it. We don't know if it's
going toc fall heads or tails: we know it definitely will be one or

the other, assuming the coin is thin enocugh, but we can't predict.-

So we get around this fundamental difficuliy by introducing random
veriables.
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I'd like to point out for those of you who heve had only tradi-
tional courses in probability theory, with very little discussion
of the philosophical and conceptional difficulties, that the best
book on the subject written to date and probably the best book that
ever will be written was written by Laplace, his Essay on Probability

Theory. An English translation is published by Dover. The book con-
tains lectures that he gave in 1799 in Paris with the constraint
that these were to be public lectures. No mathematical symbols

were to be used. It's very interesting to see him talk about the
Gaussain distribution without any symbols at all. When he mentions
pi he never uses the symbol for %77 he Says the ratio of the cir-
cumference to the diameter of a circle. But he mentioned and dis-
cussed such problems as how many people should be on a jury and all
sorts of problems which people think are Jjust modern operations re-
search. They forget that there was the same interest in the appli-
cation of mathemetics to the problems of the world at the beginning
of the 19th century and the end of the 18th. And one of the reasons
vwhy this didn't flourish is because people realized very precisely
then that mathematics was quite limited. One has to be very careful
before you apply it to economic, social, or political problems. I
think we're beginning to find that out again today. But this is an
excellent book, completely readable, very charming.
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Adaptive Control

The concepts of adaptive control can best be brought
out by making use of the problems that we have discussed
earlier in stochastic control theory, where certain of the
quantities which were well known before now are considered
to be less well known or entirely unknown. Thls requires
the introduction of new techniques of analysis.

Conslder the simple linear problem discussed pre-
viously:

(1) Wy tay +v 4, uy = c.,

The criterion function we take to be a simple quadratic,
and the problem is

\ r
F.C.

(2) S (b AT 2
2 Min Exp u, -b + Vi, s

[v] K=o K K=o ¥
where the first term represents the cost of deviation
from the desired state b, and the second term is the cost
of control. r at the j-th stage is either +1 or -1,
with probabllity p and 1-p, respectively. The problem is
identical to that posed in stochastic control theory with
the following exception: p is unknown!

In order to remove the ambiguity introduced by trying
to find E¥p, if r 1s unknown, and hence posing an intrin-
sically meaningless problem, we must now deal with the
probability of a probability, a technique which is common
in the fileld of statistics.

Let us assume:

9 U
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1. That p has itself an a priori probability dis-
tribution dG(p),

2. That we wlll revise this a priori distribution
function on the basis of outcome as the process unfolds by,
for example, the Baye's estimation, which 1s the simplest
method,

3. We will act as if the expected probability is the
actual probability.

In processes of this type the information pattern plays
an important role. In addition, we must consider an en-
larged concept of the state of the system. We now must
consider a) the physical state ¢, b) the sequence of values
of Ty, i.e., [1,‘1, -1, -1, -1, ...]. In fact,rthe order
is not important in this case. But it 1s essential to
observe how many +1's and how many -1's occur, say m+l's
and n-1's, We will now interpret the state in the generalized
sense:

(3) P = P(c, m, n).

A typical estimate of the probability of r would then be

m+1
(4) = i

By the Baye's estimation formula,

m n :
(5)  a6(p) = —% (1-p)dp
f . p"(1-p)"dp

Hence the expec$ed probability,
1
+1
a[o p" - (1-p)"dp

T
,(o p™(1-p)"dp

Pmn

(J&)
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This changes an a priorl estimate to an a posteriori esti-
mate. Of course, this must converge to the true probabllity

for p=1.

The functional equations for problem (1) with criterion

function (2) follow directly by means of the methods dis-

cussed earlier.

(7) ¥ wm)? AT 2| = g )
T Min Exp u, . -b + v = f.(c, n, m).
v r k=0 k k=0 k N*"
F.C.

And it follows that

(8) fN(c, n, m) = Min [(c-b)2 + ‘lvg +
A o
pman-l

Among these higher level control processes, there is
a hierarchy of uncertainty. Starting at the lowest level
of uncertainty we have:

1. Problems in which the uncertainty has a known
probability. These we have called stochastic control
processes;

2. Problems in which the uncertainty has an unknown
probability, but the probability has a known distribution
function; and

3. Problems in which the uncertainty has an unknown
probability with an unknown distribution function, but

the distribution function belongs to a family of functions
characterized by a fixed but unknown parameter, itself pos-

sessing a distribution function, e.g.

32

(ac+v0+1, m+l, n) + (1"pmn)fN—1(ac+VO'l’ m, n+l)].
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pa(i-p)BqP

(9) dG(p) = ra) X
fo pO((l—p)/de

Here dG(p) represents the unknown distribution function of
p, and the probability distribution function of (X and/?
may be another function dH(C(,}g).

Analagous to the hierarchy referred to above is the
level of intelligence of so-called intelligent digital
computers, provided one defines the level of intelligence
as the level of ablility to make decisions. At the present
state of the art, our digital computers are at Level O,
i.e., they can handle only strictly determihistic processes.
From a state p they obtain, by a simple transformation,
state pl=T(p), then p2=T(pl)-= Te(p), etc., no more than
the simple iteration processes referred to at the beginning
of this lecture series. The next level, Level 1, is that
of stochastic processes; Level 2 1s occupied by simple
adaptive processes; and Level 3 contains the complicated
learning processes outlined above. There 1is much doubt
that we can ever make computers that will achieve the
higher levels. To do 80, we would have to understand com-
pletely the process of human thought.

Concluding Remarks

Dynamic programming 1s a method of handling multi-
stage decislon processes. To make use of the techniques,
one must be able to convert problems which traditionally
have been handled by classical methods, or be able to
recognize among the large class of classically unmanageable
problems those problems that can be interpreted as multi-
stagé decision processes. In most mathematical problems,
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one doesn't know a priori which is the proper mathematical
method.

For example, the simple problem of finding the solution of
(10) u" - u =0, u(0) = 1, u'(0) = 0
is entirely equivalent to

o202

(11) Min 4{ (u'c-u“)dst.
u(0)=1 J 0

The latter case 1s easilly interpreted as a multi-stage

decision process. '

Another simple example is

(12) % 5 2
12 Max X over X, = a
A =1 * 125 i

which, when properly interpreted, leads to the functional
equation

(13) fN(a) = Max [XN + £y 4 (a-xﬁ)]
‘ N

which is solved by choosing Xy to maximize (13), then XN-1?
etc.

The concept of a state plays an important role in the
theory. By means of a transformation T, the state p — T(p),
and then control q is easily concelved as a choice of
transformation; i.e., the controlled transformation is
p — T(p, q). The criterion function usually is entirely




-~
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arbitrary, and can be chosen for convenience. The central

question here, as in all of mathematical physics, is whether
to choose, to represent some physical situation, a set of
complicated equations and then solve by means of some
approximate methods, or to represent the system approxi-
mately and solve the corresponding equations exactly.

In control theorytwe approximate a complicated system by
simple models and solve these in the best possible way.

¢
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ELLIPTIC MOTION



Elliptic Motion

Chapter One: Introduction to the Mechanics of Celestial Bodies.
1.1 DNewton's Law of Gravitation.

Celestial mechanics is, in the main, a branch of Newtonian mechanics,
and the fundamental law is Newton's Law of gravitation. It is true that
this law may not cover every contingency in cosmogony, but its inadequacies
in celestial mechanics are small indeed. Also, in cases where the relevant
arguments of general relativity have achieved explicity forms, the resulting
arguments of general relativity have achieved explicit  forms, the resulting
modifications to motion governed by Newton's laws have been dealt with by

established perturbation theories of celestial mechanics. (5)

Newton's law states that: "any two particles attract each other with
a force that is proportional to the product of their masses and inversely
proportional to the square of the distance between them." Let the particles

1 and o,

gl

ave masses ml and o, and position vectors respectively. Then

the force exerted by m, on my can be written

- Ky - )/ | - npl
(In these notes a vector is written with a line underneath. A unit vector
is written with a "cap" above it, i.e., ?, and l r |, or simply "r" stand
for the modulus of r. It is assumed that the reader is acquainted with
elementary vector algebra and calculus; if not, see (2). K> is often
written as "G", and the value in c.g.s. units is 6.67 . 1078, But this
value would not be accurate enough for calculation, and normally special

units must be chosen so that the constant is known much more accurately.
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Consider a system of masses .« . . m at r r r .
o Y ml, mQ, > m Typ Ipooov v 5 I

They will exert a total force on a mass m at r of amount
2 < 3
-km Zmi(z-zi)/l r-xr, 7.
c=1

The particle m will experience some force wherever it is, and the n
bodies are said to set up a "field of force." The strength of a field
of force at a point r is the force exerted on a particle of unit mass
placed at r. Strictly, the word "force" in this context means "force per

unit mass.” The n bodies produce, therefore, a field of force

- k2 E: ng‘z - Ei)/ | r - Eil 3, (1.1.1)

=1
The three components of force in (1.1.1) can be derived from the

gradient of the "force function”

For instance, the x-component of the gradient of U (or gradlU, or wU)

is 2U/ 9x. Since

| oz |- Gen)® e Gy e ey R
e g r x| /ox= (x-x) ()P 4 (yoy)? + (2-2)) afe
and 2U/dx = - (x-x,) (X'Xi)2 . (y_yi)e N (Z-zi)2 - 23/2 .

The force function is the negative of the work that would be done in
assembling the system of n bodles from a state of infinite diffusion.
As the words are normally used, it is minus the potential; but this con-

vention is not universal, and I shall use only force functions here.
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The transition from particles to solid bodies is accomplished by
integration. Consider the force function of a uniform, thin spherical
shell at a point O ocutside the shell. Iet the shall have center C, radius
a, thickness da, and density p; and let Qc = r. If P is a point on the
shell, let the angle QCP = ©. Divide the shell into thin rings perpen-
dicular to OC and defined by 6 lying within the limits © and © + do.

The radius of a ring is asin®,
and its mass is
p2 Ma sin 6 a do da.
Any elem®tf of the ring is at
the distance
(r2 + a? - 2arcos@)l/2
from O, so that the force function
of the ring at O is
kEpEfTa?da sine ae (r2 + a? - Qarcose)-l/g,

and the total force function due to the shell is

T
U= kEFQTVaEda;/(-sinQdQ (r2 + a2 - 2arcosG)-l/2 s
o

where the square root must always be positive. This can be integrated

at once to give 7
2 2 1/2
M - dm.[“l (r +a - 2arcose)
2 ra ©=o0
- %2 dm/r,

where dm =‘4ﬂra?p da is the mass of the shell. This means that, so far

as O is concerned, the shell could just as well have all its mass concen-
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trated at C. This must also apply to a shell of finite thickness,
since the result is not affected by integration over a, and it applies
in particular to any solid body that is constructed in concentric spherical

shells, provided we are outside it.

If, therefore, we have a system of n bodies, each having spherical
symmetry, then they can be considered as particles generating a force
function (1.1.2), provided they do not approach too close to each other.
The mass of each body is considered to be concentrated at its center of
gravity, and the coordinates of a body are the coordinates of its center

of gravity.

Fortunately, in most problems of celestial mechanics the bodies can
be assumed to be spheres. In the first place they are, in fact, nearly
spherical, and in the second place the distances between the bodies are
usually large compared wikh the dimensions of the bodies themselves.

In the case of the motion of an artificial satellite the latter condition
does not hold, and the oblateness of the Earth actually causes major per-

turbations in the motion.

Outside a gravitating body the force function must satisfy Laplace's
equation,
V= 32U/‘Dx2 + aeu/’()y2 +22U/2z2 = 0.
(This can be proved by differentiating equation (1.1.2); the sumation
is replaced by an integration.) It transpires that the force function
of the body can normally be expanded in a power series in 1/r, where

JEt
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r is the distance from its center of mass; the coefficients are called
spherical harmonics. If, as is often the case, the body has symmetry

about an axis, the force function can be expressed as

2 .
M<® 4L - 1 1
= (1 - ;g JB, - ——-—r3 J3P3 - ), (1.1.3)

where the P, are Legendre polynomials (functions of the latitude) and

the J’i are constants; if the body is nearly spherical, the latter becomes
small quite rapidly. Now it would be possible to find the force function
of such a body by integration, if we knew precisely how it was put
together. Failing this knowledge, it is still poséible to write down its
force function directly, so far as all the variable quantities are con-
cerned. The theory of the motion of an artificial satellite, without
drag, can be constructed using the force function (1.1.3). Then, later,
observations may furnish the values of the Ji' A lack of knowledge

about the insides of a body is therefore no great hardship vwhen its

force function is required. (For more details, see Ref. 2, Chapter k4.)

1.2 Newton's Laws of Motion.

We are concerned with Newtonian mechanics, the basic assumptiéns
of which are contained in Newton's laws of motion. These are:
1. Every particle continues in a state of rest or uniform motion in
a straight line unless it is compelled by some external force to

change that state.

i02
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2. The rate of change of the linear momentum of a particle is pro-
portional to the force applied to the particle and takes place in
the same direction as that force.

3. The mutual actions of any two bodies are always equal and

oppositely directed.

A man who observes the motion of surrounding bodies that are not
acted on by forces, and notes that they are not accelerated is entitled
to feel that, for practical purposes, he is at rest with respect to
some inertial system of reference. But if these bodies have any
accelerations, then he is not (although he may invent forces such as
centrifugal or Coriolis forces, to preserve the illusion). Certainly,
no point fixed on the surface of the Earth could be the origin of an
inertial system, although some sufficiently parochial experiments
might give that impression. Motion observed (sic) by a non-rotating
man at the center of the Earth would still show acceleration because
of the action of the Sun, Moon, etc., on the Earth. Similarly, motion
observed from the center of mass of the solar system should be affected
by nearby stars, and the field of the galaxy (to say nothing about
nearby galaxies): this is true in principle; but there is no known
experiment to detect such effects, so that no purpose is served by
considering acceleration with respect to the center of the galaxy,
and so on. So we shall not worry about the practical difficulties of
choosing an inertial reference system, and we are certainly not con-

cerned here with the thornier difficulties as to whether such a system
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can exist at all. We adopt the attitude that, given any problem in
Newtonian mechanics, there exists an inertial system with respect to
which the equations of motion can be written down; but no special
assumption must be made about the whereabouts of the origin. Once

the -equations of motion have been set up, algebra will enable the
origin to be transferred to this place or that. Also, inspection of
some terms in the equations may result in their being rejected on
account of their smallness. But the original equations must be written
down without any assumptions being made about the origin, or the

relative importance of different terms.

The measurement of "uniform motion" requires the use of a "uni-
formly flowing" time. The use of Universal Time (which is based on
the rotation of the Earth) threw up accelerations of the Moon and
planets that could not be explained by Newtonian mechanics, but which
could result from non-uniform flowing of Universal Time. A suitable
time has therefore been invented; this is Ephemeris Time. Its relation

with Universal Time is given in the almanacs.

The second law can only be applied to motion observed with respect
to an inertial reference system. If a particle of mass m is at r

and the resultant of the forces acting on the particle is ¥, then
d

T at

|+

dr
M ) (1.2.1.)

Two important formulas follow from this. Firstly,

! ar
xF = Fp|Ixr , (1.2.2.)
104
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or '"the moment of the external forces is equal to the rate of change of
the angular momentum". Then, if F is the gradient of a force function
U that does not contain the time explicitly, and if m is constant,

2
l(dr

5|55 |- U = constant. (1.2.3)

(For, differentiating (1.2.3) with respect to the time, we have the

scalar product of dr/df and (1.2.1).) This is the energy integral.

The third law is obeyed by Newton's Law of gravitation, and is
needed in a derivation of this law from Kepler's laws of planetary

motion (quoted in Section 2.L4).

Newton's laws apply directly to the motion of particles. If a
body of finite extent is acted on by a system of forces, then the
motion of its center of mass can be found by shifting the forces
parallel to themselves so that thelr lines of action pass through the
center of mass. The motion about the center of mass is considered,
basically, through equation (1.2.2); subjects such as precession or
physical libration fall under this heading; but they will not be con-

sidered here.
1.3 Equations of Motion.

Consider the motion of n particles with masses M, My, eerp M,
which have position vectors 75)1, Pos cevs Pus with respect to an inertial

reference system. The equation of motion of m, is

. o o £ P < /o
mp; = KWy E m =2, (3 4 1) (1.3.1)
J=! /aj
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where fﬁj = ] i jl' A prime stands for differentiation with respect

to the time. Adding the equations for all the particles, the forces

cancel (from the algebra, or from Newton's third law) leaving

n

Zn&ﬁ; = 0. (1.3.2)

L=l
But j{%iﬁﬁ is the position vector of the center of mass of the system,
and this is not accelerated with respect to the original inertial
system; therefore the center of mass could be the origin of an inertial

reference system.

Multiply (1.3.1) vectorially by'zix, and add all n equations. The

right hand sides again cancel, leaving

r . %

. " o__ - | -
Zmi_:_c'_ix_z_'i = 0, or Zmi_{iag_i =h (1.3.3)
=1 c=!

where h is a constant vector. The plane through the center of mass of
the system and perpendicular to h is constant throughout the motion,

and is called the "invariable plane" of the system.
The equations (1.3.1) can be written in the form
"o
m p; = 4;U, (1.3.4)

where, iffi has components (§i’qi’ gi)’Vi has components

3/9§i, 3/any» 3/3(;» and where

n . .
v=xy § o Dimy, (1.3.5)
(<3t P

We therefore have the energy integral for the whole system,

103




Elliptic Motion. 1.3 .10,

n
% ‘_mifi'z - U = constant. (1.3.6)

L

(=1
But no integral can be written down for an individual member of the

system.

Suppose that one body, m s is considered to be dominant, either
because of its relatively great mass, or because the motion in which
we are interested takes place very close to it. Subtracting the equation
of motion of mn from that of m, (after dividing by m and mi, re-

spectively) we find

Pi-Pn=-

Now let the position vector of m, with ré’s’i’:‘éct to mn be r., so that

i i
L S A
-1
r ] . .
e ko(m +m )=kt \ m, Lol L (1.3.7)
-i n i 3 j e 3 ~r.3
Ty 4 ¢ g
Jg=1
j#C
Further, if C e
iy YJ'
then 5 _1_‘i <
Ei + k (mn + mi):—§ = Z minRiJ. (1'3'9)
i [
uel,
Jrve
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Now if all the masses except m.n and mi were zero, the right hand
sides of (1.3.6) or (1.3.8) would vanish, and the equations of motion
would refer to the two-body problem; the solution of this is called
Keplerian motion, and is described in the following chapter. It is
frequently possible in celestial mechanics to find a dominant body,

m , such that the terms on the right hand side of (1.3.7) are much
smaller than lce(m.n + mi)zi/riS. In this case the motion can be con-
sidered as Keplerian motion "perturbed" by the forces on the right hand
side. This is why Keplerian motion is so important in celestial
mechanics. The word "perturbation" normally implies a departure from

Keplerian motion; the forces on the right hand side of (1.3.7) are

"perturbing forces" and the Rij are "perturbative functions".

The reference system in (1.3.7) is non-inertial. The terms on
the right hand side include the "direct" attractions of the bodies
on m, and the "indirect" attractions on m s the origin. In a practical
application many of these terms might be found to be negligible; but
it can happen that the direct attraction of a body is negligible,
but the indirect attraction is not. Further modifications can be
made by adjusting the origin, and the mass of the dominant body; for

details, see Ref. 2, section 9.5.
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Chapter Two: The Two-Body Problem.
2.1 Properties of Conics.

Any orbit in the two-body problem is a conic, and before dis-
cussing the solution we shall briefly review the relevant properties

of conics.
The polar equation of a conic can be written as
p/r = 1 + ecosf, (2.1.2}

where the origin is at a focus of the conic, and f is the polar angle,
measured from the major axis. [Equation (2.1.1) follows from the "focus-
directrix" definition of a conicj i.e., that it is the locus of a

point such that the ratio of its distance from a fixed point (a focus)

to its distance from a fixed line (a directrix) is constant, the value

of the constant being equal to e] e is the eccentricity; if e = 0O

the conic is a circle; if e is less than one, it is an ellipse, which

is bounded; if e = 1 it is a parabola; if e is greater than one it

is a hyperbola.

Let an ellipse have center C, foci S, S', major axis AA', and
minor axis BB'. The following relations are useful, and should be

memorized:
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CA

CA' = a,

CB = CB' = b,

0
&
I
fe}
I
2
H
[}
£
o

The ellipse can be obtained
by the orthogonal projection of a

circle. Let Q be a point on the

circumference of the circle, and

ellipse, and let QP cut the major
axis at R. Then PR/GR = b/a.

Further, let £LACQ = E (the "eccentric

Bi
l/
P the corresponding point on the E;::::;\\\\\\i;

anomaly"). With origin at S, let
the X-axis point along SA, and the
Y-axis point along the latus rectum, as shown. This reference system
will be called the "orbital reference system". Then the coordinates

of P can be written:
X = a(cosE - e) = rcosf, Y = bsinE = rsinf. (2.1.2)

The area of the ellipse is frab. We also have

1190
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T =\/X2 + Y = a(l - ecosE). (2.1.3)

Formulas for the parabola can be obtained from those for the
ellipse by (carefully) letting a—>® and e =51. It is safest first
to eliminate a or e using q = a(l - e), since g remains finite.
Suitable modifications to cover hyperbolic motion will be given in

section 2.4.

2.2 The Solution of the Orbit.

Consider two particles of mass ml and m,. Let the position vector

of m2 with respect to ml be r. From (1.3.7) we see that the equation

of motion of m2 is
r" + ke( +m )yr3 = 0. (2.2.1)
S RO~

If the origin was at the center of mass of the two bodies, the
reference system (non-rotating) would be inertial. Then if the masses

were at _r_l and LY

the equation of motion of m, would be
e
or, since r, = [ml/(m:L + mg)] T,
_I_'g = -k2|__m]3_/(m1 + m2)2]£2/rg. (2.2.2)

Equations (2.2.1) and (2.2.2) are of the form

(2.2.3)
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but with different values oi}U .

Equation (2.2.3) requires six constants of integration for its

solution. Taking rx(2.2.3), we find rxxr" = 0, so that

rxr' = h, a constant. (2.2.4)

h supplies three arbitrary constants. From (2.2.4), r.h = 0, which is
the equation of a plane through the origin. The motion must take place
in this plane; h determines its orientation, as well as the magnitude

of the angular momentum. Now take hx(2.2.3), and use (2.2.4). We find

hxr'" = —/(—/-(rxr')xr

~/f§[rg£' - (z.z)z]

'%[:I'QE' - (rr'){]

= _//[E'/r - zr'/re]
= # /)
= -Mar/dt.

[{' is the velocity vector; r' is the rate of change of the scalar r.
Differentiating £2 = r2, we find r.r' = rr'; a useful relation.]

Integrating, we obtain
1_]:}{2' = -/U’I\‘ - 2, (2.2.&)

where P is an arbitrary vector; but since it is perpendicular to h,

112



Elliptic Motion. 2,2 16.

it only contains two arbitrary constants. The remaining constant of
the motion will be considered in the following section. Taking

r.(2.2.4) we obtain

r.(hxr') = -pr - P.x
or
-h(mxx') = -pr - P.x
or
h =T+ P.r
or

This is the same as equation (2.1.1). We have h?Au = p, the vector
P points along the major axis toward pericentron, and P =pe. The
angle f is called the "true anomaly". If e is greater than one, only
the branch of the hyperbola that is concave toward the origin can be

described in the motion.
2.3 The Orbit in Time.

The vector r' has components r' along % and rf' perpendicular to
it; therefore the modulus of E?E' is r2f', which is twice the rate of

change of the area swept out by the radius vector. From (2.2.4) we have
2
r-daf/dt = h. (2.3.1)

The integration of this equation supplies the final constant of inte-
gration. Substituting for r from (2.1.1) we get a simple integral;

but except when e = 1, it is convenient to introduce an intermediate
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angle, the eccentric anomaly.

Assume the motion to be elliptic. Differentiating (2.1.3) we
find

r' = aesinE E'.
And differentiating rcosf = a(cosE - e), (from (2.1.2)),
r'cosf - rsinf f' = -asinE E'.
Eliminating r' and f' from these itwo equations and (2.3.1) we find
hsinf = asinE E'(1 + ecosf)r.
Now using the relation
n° =pp =pa(l - &%),
and the formulas (2.1.2) and (2.1.3) to eliminate f and r, we find
‘\LL//a3 = (1 - ecosE)E',

which can be integrated to give

Wt - T) = E - esinE,

where T is a constant of integration; it is equal to the time when

E = 0, or when the body is at pericentron. This is Kepler's equation.

By letting the eccentric anomaly go from O to 2/7, we get the time
for a complete revolution, or the period of the motion, which is

P = 2. (2.3.2)

itd
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The "mean motion", n, is defined by
2_3
n = 27/P, so that n"a =/u. (2.3.3)

The angle

M= n(t - 1) (2.3.4)
is defined as the "mean anomaly". So Kepler's equation can be written as
M = E - esinE. (2.3.5)

Normally we are given the time, and want to calculate E. That
there is a unique solution can be seen from the fact that the right
hand side of (2.3.5) is monatonic increasing with E (for its differential
coefficient with respect to E is (1 - ecosE), which is always positive).
One of the best ways to find E is to use Newton's method. If E. is

0]

a good guess, and E is correct, let

AE
JARY

E - EO,
and

M - Mb =M - Eb + e51nEo.

Then if (AE)2 is neglected,
AE =ZXM/(1 - ecosEO).

Because of the approximation, this correction is not exact, and the
process will have to be repeated until[&M becomes less than some
small pre-assigned value. This process converges best when e 1s small,

when a good first guess is
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EO =M + esinM,

(although the series for E in terms of M and powers of e, given in
the following chapter, can be truncated later if desired). For more
details, and for a discussion of the situation when e is nearly equal

to one, see Ref. 3.
2.4 Miscellaneous Properties.

Kepler's three laws of planetary motion are:
1. The orbit of each planet is an ellipse, with the Sun at one of
its foci. (Actually "Keplerian motion" is often now taken to in-
clude parabolic and hyperbolic motion, so that "conic" might replace
"ellipse".)
2. Each planet revolves so that the line joining it to the Sun
sweeps out equal areas in equal intervals of time. (Therefore the
acceleration of the planet is directed toward the Sun, and so also
is the force acting on the planet. From this law, and the first,
Newton's law of gravitation can be deduced.)
3. The squares of the periods of any two planets are in the same
proportion as the cubes of their mean distances from the Sun. This
law should be modified so that Pg(m1 + m.2)/a3 is a constant for any
two bodies, where a is the semimajor axis of the relative orbit, P
is the period and m and m, are the masses of the bodies. The law

can be used to find the mass of a planet that has a satellite.

Many important formulas for elliptic motion have been given already.
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A notable omission is the energy integral,
.2
r'” =(2/r - 1/a). (2.k.1)

The parabolic velocity, or velocity of escape is found by putting

l/a = 0. The circular velocity is found by putting r = a.

When changing from E to f or £ to E, the following formulas are

useful:

cosf = (cosE - e)/(1 - ecosE), sinf =\/1-e° sinE/(1 - ecosE),
(2.4.2)

cosE = (e + cosf)/(1 + ecosf), sink =\/1-e° sinf/(1 + ecosf).

Using the relation tane(f/E) = (1 - cosf)/(1 + cosf), it is easy to
verify that

tan(£/2) = i L2 tan(E/2). C (2.h.3)

When using these formulas, it should be remembered that f/2 and E/2
alvays lie in the same quadrant. If we write e = sinp(0< ¢ < W2),

as 1s commonly done, then
tan(£/2) = tan(T/4 + p/2)tan(E/2).
From Kepler's equation, and (2.1.3) we have
E' = na/r. (2.4.4)

Also we have

r' = nazesinEVr = (e//h)sinf. (2.k.5)
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Formulas (2.1.2) are important. Differentiating them, we find

Xl

- naesinE/r,
(2.4.6)
Yl

na2 l-e2 cosE/r.

In parabolic motion let g be the pericentron distance, then the

equation of the orbit is
r=g sece(f/E).

An equation involving the time is

%—tan?’(f/Q) + tan(f/2) 3 ////2q3 (t -T).

Formulas for hyperbolic motion can be derived from those for
elliptic motion as follows. Assume a to be negative for a hyperbola.
Ir 12 = -1, replace E by iF (so that cosE becomes coshF and sinE
becomes isinhgli_zgplace n by -ilJ, wherel/ga3 = 7&3 and]/ is positive,

and replace l-e2 by 1 e2—1.

Many important formulas have been omitted here. The reader should

consult, in particular, Ref. 3.
2.5 The Orbit in Space.

An orbit is defined by six constants, and these require some
kind of reference system. The celestial equator or ecliptic are often
used as reference planes, with the direction of the vernal equinox

defining an axis. Neither of these planes is fixed, and it is necessary
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to use their mean positions for some definite epoch.

A suitable set of constants would be the components of position
and velocity, Ty 56, at some time to; it is possible to calculate from
these the position r at any time t (formulas for the calculation of
the velocity are easily deduced and will not be given here). Since
the motion takes place in a plane, it must be possible to resolve r

along the directions of EO and 56. So we can write

= fEO + 8Tq»

I

where T and g are scalar functions of t. and t and the initial con-

0
ditions. From (2.5.1) we find

— 1 — .
fh=mx) and gh= I

These are vector equations, independent of the reference system.

So f and g can be evaluated by substituting components referred to

the "orbital reference system" defined in section 2.1. The components
are given by formulas (2.1.2) and (2.4.6). After substitution and some

simplification, we find

H
I
R

[cos(E - EO) - ecosEO],

(2.5.2)
%[sin(E - Eb) - e(sinE - sinEo)]-

o
i

Before using (2.5.1) and (2.5.2) to calculate r, it would be

necessary to calculate a, e, EO’ and E. We are given o and 56.

(2.4.1) will give a. Then (2.1.3) and (2.4.5) will give ecosE; and
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esinEo, from which e and Ej can be found. (In using (2.4.5), remember

| S ' * ' . .
that roro = EO'EO') Finally, Kepler's equation can be used to find E.

In the formulas above a, e, and EO are introduced as intermediate
elements; but they help to give a picture of the shape and size of the

orbit, and the initial whereabouts in the orbit, that and r} com-

2 o
pletely fail to do. It is more usual to use six constants, each of
which has an easily visualized geometrical meaning; these are the
"geometrical elements" of the orbit. a and e are two possible elements,
and a third is a time of pericentron passage, T, or any number, such

as the mean anomaly at some time, that enables the position in the

ellipse to be found at any time. The description of the orientation

of the orbit in space requires three angles, illustrated below.

= |

E__C//'/Ofllc
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In the figure the fundamental plane is the ecliptic (it could equally
well be the celestial equator, if preferred), the Sun is at 0, Ox
points toward the vernal equinox and Oz toward the north pole of the
ecliptic. The plane of the orbit cuts the celestial sphere in the
great circle NPR where N is the point where the body in its orbit
crosses the ecliptic, going north; it is called the "ascending node".
The angle xON (measured eastward around the ecliptic) is called the
"longitude of the ascending node" and is written as§7 . The angle
between the ecliptic and the plane of the orbit is the "inclination",
I. For 0 { I L 90° the orbit is direct; for 90°< I < 180°, it is
retrograde. If OP points toward pericentron, the angle NOP = W/
(measured in the sense in which the orbit is described) is called the

"argument of pericentron".

These six constants are sufficient to give a geometrical picture
of the orbit, am to enable position (and velocity) in the orbit to
be calculated at any time. Among the alternatives often used is
a4
(U= §) +(J, called the "longitude of pericentron". (The word "peri-
centron" would be replaced by "perihelion", or '"perigee", etc. as

appropriate. )

To find the position at any time when the elements are given,
first solve Kepler's equation for the appropriate value of the eccentric
anomaly, and then use equations (2.1.2) to find the coordinates in the

orbital reference system. The coordinates in this system can be related

12
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to the coordinates in any other system by a series of rotations. The
following successive rotations: - [ /about the Z-axis, -I about the

new x-axis, and -§> about the new z-axis, will transform coordinates

in the orbital reference system to those in the x-, y-, z- system of the
figure. A further rotation about the x-axis through - E(where € is

the obliquity of the ecliptic) will lead to coordinates based on the
celestial equator; these are necessary if right ascension and declination
are to be calculated. The transformation resulting from a rotation

about an axis of reference can be most conveniently described by a

matrix multiplication. For details, see Ref. 2, Appendix B. The

result of all the rotations described above can be written in the form

_ % B
x| = |P QX[X ,

p 2.5.
y v % LY (2.5.3)
2l %

where the P's and Q's are direction cosines of the X- and Y-axes with

respect to the x-, y-, z-axes.

Suppose that it is required to find the geometrical elements when
position and velocity, Ty zd, are given for a time to. a is found

from (2.4.1) and e and E, from (2.1.3) and (2.4.5), as before. Then

T, or MO’

equation. The individual anglesg?, b], and I might now be found

the mean anomaly at the epoch, can be found from Kepler's

from formulas:

122



Elliptic Motion. 2.5 . 26.
8= Ipxr,
= (hx, hy, hz),
hX = hsingzsinl,
hy = - hc0sgzsin1,
hZ = hcosI.
£ from (2.4.3) (2.5.5)

. zZ
sinu = ;cosecI,
rcosu = xcosgz + ysingz,

(u is the "argument of the latitude")
W=u - T,

where an extra 360° may have to be added to make(,/ lie between O and

360°.

Alternatively, it may be better to find the P's and Q's of (2.5.3)

directly. (2.5.3) can be written more generally as

[ ' _ B t
XO xo_1 = Px QX~W XO XO ,

? ]

Yo Yo P e Yo

ljo o) |z 2

where XO = a(cosE, - e), etc. from (2.1.2) and (2.4.6). Then, solving

0
1 ! 1 3 T L.
for the P's and Q's, we find (since XOYO YOXO h),
i23
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i i = [- ! ! -
P Q x, x5 Yi/h Xé/h .
' -
Py Qy Yo ¥ Yo/h Xo/h (2.5.5)
1t i
LPZ QZ ZO z

The individual anglesg? ,(, and I can also be determined from the

P's and Q's.

For an account of the determination of the elements when two

positions for two different times are given, see Ref. 3.

In certain cases some element can only be poorly determined. For
instance, if e is small, EO and (L/ or Cj cannot be found as accurately
as the other elements because, somewhere along the line, their cal-
culation involves division by e. Similarly, if T is small, {? is
poorly determined. It is possible to put too much emphasis on the
difficulties that result. (Jor §? should not be considered as goals
in themselves. Suppose that the object of the work is to calculate
position and velocity at any time; then it need not matter that for
small e an angle such as {J is poorly determined (in fact there will
be a multiplication by e during the calculation), and the accuracy of
the final result need not suffer at all. Difficulties due to a small
I can be avoided by using the P's and Q's. If a programmer is deter-
mined to avoid any division by e, there are several ways in which this
can be achieved. One possibility is to use ecosEO and esinEb as

elements; there need be no doubt about their accuracy. Let E be the

eccentric anomaly at time t, then from Kepler's equation applied to the
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times tO and t, we find

n(t -t.) =E -E_ - esinE + esinE
0 0 0 (2. 5.6)

—ZXE - ecosE 51déE - es1nE co + e51nEb

whereZSE E - E This can be solved forZSE, and then esinkE and
ecosE can be calculated, and (2.5.2) and (2.5.1) used to find the

position at time t.

If the elements are to be considered as slowly varying quantities
in perturbed motion, other problems may arise, and different elements

are needed for special cases.
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Chapter Three: Expansions in Series.
3.1 Expansions in Powers of the Eccentricity.

The stumbling block in any attempt to express position in Kep-
lerian motion explicitly in terms of the time, comes in any attempt
to express the eccentric anomaly explicitly as a function of the mean
anomaly. In general it cannot be done in a finite number of terms.
But if the eccentricity is sufficiently small, approximate expressions
can be developed that are good enough. Fortunately, nearly all the

planets and satellites in the solar system have orbits with moderately

small eccentricities.

For a circular orbit, E =M. If e is small, then, writing Kepler's’

equation in the form
E =M ~ esingE,
we see that to the order of e, we can put

El = M + esinM.

3

Now if we put E_ = E& +(5Eﬁ) and ignore e-, we find

2

E2 = M+ esinM + %e2sin2M.

Further development along these lines becomes immensely tedious,
and it would be an advantage if some formula could be found that would

give the general term. Such a formula is given by Lagrange's theorem,
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which can be stated for the problem in hand as follows:

Let E =M+ ef(E),

2

F(M) + SL(MF' (M) + S .g.ﬁ{f(m)] %v(m)} Foa.
- il {[f(M ] % (M)} .

then F(E)

q! dMq -1
Now put F(E) =E, so that F'(E) = dF/dE = 1; and put £f(E) = sinE.
Then we get

e2 5 I gRT
E=M+ 51nM+-é—,--§E(sin2M) + oee. + (cln JM) + ... (3.1.1)

1. nt e -1

Any other F(E), such as r = F(E) = a(l - ecosE), can be expanded

similarly.

The general statement of Lagrange's theorem would have been
timely, because it includes the condition for convergence of the series
(and it is not often that a question of the convergence of a series
in celestial mechanics can be answered). Limitation of space prevents
a discussion here, but see Ref. 4, Sec. U6. The upshot is that series

in powers of the eccentricity converge for values of e less than 0.6627....
3.2 Applications of Lagrange's Theorem.

An unattractive feature of (3.1.1) is that powers of trigono-
metric functions appear. It 1s usually simpler to deal with terms such
as sinkM rather than sinkM, so that Fourier series are generally pre-

ferable to power series. Also it is laborious to change from one to the
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other, so that it is an advantage if a Fourier series can be generated
in the first place. One way of doing this is to use the exponential

function. For

ElkM: coskM + isinkM,

where E is the exponential and 12 = .1, so that what is generated as

a povwer series in E becomes a Fourier series.

Consider (2.4.3). It is usual in these developments to get rid

of the square root, so we introduce

Ji J:[} - ____:lL*: = (3.2.1)
so that L= %e(l +[}2). (3.2.2)

Also, introducing sin¢ = e, wWe haveﬂ= tan%(}.

(3.2.2) could equally well have been written as

L=+ (%e)(lﬂuﬂe), M= 0.

Then ﬂa can be expanded in powers of %’- e by Lagrange's theorem to give

BJ

-1

i (3)¥/a] {Z;q_l,[u ¥ M2>%Mj'l]} o
i 1%/a a3 i Q! prj-l}
3 & q T __O(q-pS.'p.'M M=0

For a term to survive the operation M = O after the differentiation,

123
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we must have 2p+j-1 = g-1l. Then for a définite value of p, q = 2p+j;

SO we can write
3 Z 1_\2p+J 2P*'%"'1-'
- —_— -
ﬁ 3 2, () P+j) !
p-o
143 1.2, 10 3(g+
SCOL ER e NP ERMPLE L) SN (3.2.3)
We are now in a position to consider expansions in powers oﬁ/}.
For the applications, put

if = logx, iE = logy, iM = logz, (3.2.4)

where i2 = -1, and the logs are to the base E, so that x = Elf, etc.

Then

xk + l/xk = 2coskf, xk - l/xk = 2isinkf, etec.

From (2.4.3) and (3.2.1) we have

x -1 _1 +[3 y - 1
x+1 1N y+ 1
50 /3
X = 1y-— y Or y = —-Q—l):_bx . (3.2.5)

Then from the first of these,

logx = logy + log(l —ﬁ/y) - log(1 -,By),

and, bearing in mind that for |z<1, log(l + z) = z - 22/2 + z3/3 + ..

we can write this as

logx = logy +ﬂ(y - 1/y) + %L?g(y2 - 15 + ..

123
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so that, from (3.2.4) we have (after division by i)
£ = E+ 2(JsinE + %égsian + l§ﬁ3sin3E + ). (3.2.6)

From (3.2.5) we see that to exchange x and y it is sufficient to change

the sign of ﬂ Therefore

E=f - 2(¢sinf - éﬁzsinzf + ¥3sin3f + oeed). (3.2.7)
Substituting from (3.2.4) into Kepler's equation, we have
1
logz = logy - e(y - 1/y).

Eliminating y, from (3.2.5), and using (3.2.2) to eliminate e, we can

transform this to

logz = logx + log(l +ﬂ/x) - log(1 +px) - —% %%g—
1

Now iﬁ =Vl . e2 = cosb, so that the final term on the right hand

l
side Zan be written as

ﬁcosb[x/(l +ﬂx) - (1/x)/(1 +ﬂ x)]
=ﬁcosb[%(l -ﬂ/x +z}2/x2 - ) = x(1 ﬂx+ 232 . )]

Therefore, expanding the logarithms as before, and substituting from

(3.2.4), we get
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f - 258sinf - %sirﬁf ool %}:os@(-sinf +ﬂsin2f - )

r - 41}(l+cos¢)sinf j[}g(%+cos¢)sin2f fz33(%+cos®)sin3f + ...].
(3.2.8)

M

The difference between the mean and true anomalies is called the

"equation of the center".
3.3 PFourier Series.

The derivation of the series in the preceding sectlon was a
trifle roundabout. Before proceeding with the direct derivation of
Fourier series we shall briefly state enough theorems to build up the

relevant background.

Let £(t) be a periodic function with bounded variation and period
275 let it be integrable for all t, so that the products f£(t)sinpt,

f(t)cospt are also integrable. Define

1 27
&g = 577 f£(t)dt,
and o
27 27T
a = L f(t)cospt dt, b = X f£(t)sinpt dt.
1 p 70
[} O
The series
for_ =}
a_ + E: a cospt + b sinpt .3.1
o ( pCOSP pSinp ) (3.3.1)

P

is called the Fourier series of f(t). If f(t) is continuous, its sum
is equal to f(t). Furthermore, if its derivative is bounded, then the

Fourier series is uniformly convergent.
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If the form (3.3.1) is accepted, then the formula for the co-
efficients is very easily recovered by multiplying through by cospt
or sinpt and integrating from 0 to 277, so that every term but one
vanishes. If f(t) is an even function, then only the a_appear, and
it is sufficient to integrate from O to 7{ , and divide by 7(/2.

Similarly, if f(t) is an odd function, only the bp appear.

Using the exponential function, we could also put

+e0

(1) = - ipt

(t) Z OCE
p--@

where YA (3.3.2)

1 ipt
= EFCr(t) dt.
js) 2?7
(4]

(Note that as soon as trigonometric functions are replaced by ex-
ponential functions, the summations must go from minus infinity to
plus infinity.)

Consider the expansion of the function a/r as a Fourier series
in the mean anomaly. It is an even function of E, and consequently of
M. Also a/r = dE/dM. Therefore

a 1 a S
2 - = + = = M
—aM cosﬂ{j’ ospM d

(6]

ol

='r_l|7 dE + —-Z cospM cos(pE - pesinE)dE.

0
Define the "Bessel's coeff1c1ent" Jp(x), or order p and argument x by
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!

Jp(x) - L cos(pd - xsind) ad. (3.3.3)

m
0

Then we can write

[ e}
%: 1+ EZ Jp(pe)cospM- (3.3.4)
p=
These coefficients are ubiquitous, and it is necessary to break

off and derive some of their properties before continuing to develop

any other series.
3.4 Properties of Bessel's Functions.

Jp(x) was defined in (3.3.3). But since
20
é%— sin(pd - xsing) ap = o,
o]

we could have written

2

Jp(x) = -23;7 | E‘ipdDEiXSin‘bdcb. (3.4.1)

Now suppose that we wanted to expand the function EIXSln4) a

+a0
Eixsin¢ - 2 apEiP‘b.

=—o0

Then, from (3.3.2) we would find thatO(p = JP, so that

S

o +ao .
E1x51n¢ __;; Jp(x)Elp(b, (3.4.2)

a formula that can be useful, incidentally, where trigonometric func-

tions of trigonometric functions are concerned.
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Now put Elb = z, so that 2isind = z - 1/z. Then (3.4.2) becomes

exp[ Xz - 1/2)] = 3 5 ()P, (3.4.3)

The left hand side of (3.4.3) can be written as the product of

oi(%x °Lz°“/oL-' and Z ( _1)5( %—Xéz'ﬂ/ﬁ.‘ .
X =0 ﬁ___o

To find the coefficient of 2F put (X =IB+ p. Now (Xcannot be negative,

so that for p_» 0,

o
JP(X) = Z(—l% (-EJ:X)P*-ﬁ. (3.)4-.)4»)
pg=0
For p <O, the summation runs fromB = -p, -p+l, .... The series

(3.4.4) is absolutely convergent for all x.

In (3.4.3) change z to -z, and x to -x; the left hand side is the

same, so that
J (%) = (-1)P7 (-x).
p p

Also, change z to -1/z. The left hand side is still the same, so that

Jp(x) = (-l)pJ_p(x).

Combining these two results, we find

J_(-x) =3 (). (3.%.5)

Differentiating (3.4.3) with respect to z, and using (3.4.3) to
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remove the exponential on the left hand side, we get

Le(x + 1/4%) ZJP(X) P Y or (x) P

So that from the coefficients of zp'l, we find
1
Sx[7,1 (0 + 3, (0)] = I (x). (3.4.6)

Similarly, differentiating (3.4.3) with respect to x, and con-

D

sidering the coefficients of z¥, we can find

A Nl

o) -3 ()] = 330 (3.4.7)

Differentiating (3.4.7) with respect to x, we have

1l
MO~

72(x) = g{I; 10 - 31 ()]

[Jp (x) - 27 (x; + J (x] [from (3.&.7)]

|
=1

= %{g(p_l)Jp-l(x) - Jp(x) - 2J (x) + %§+l X) -4d (X)]
[from (3.u.6)]

= -Jp(x) + é%[(p-l)J (x) + (p+1)Jp+l.(X)]

p-1

2
-7 (x) + 52- Tp(K)-5 31 (). [erom (3.4.7)

So JP is a solution of the equation
" 1 2,2
'+ +(Q-p/x)y=0

The general theory of Bessel's functions can start from this equation;

but this is not needed for our purpose. We need only the solutions

of the first kind, with integral values of p, and the definition given
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above is sufficient.

The series (3.4.4) demonstrates that the Jp can always be calcula-
ted. But there are many alternative methods of calculation, using such

devices as recurrence relations, or continued fractions. See Ref. 1.
3.5 Applications of Bessel's Functions.

Consider the expansion of sinmE. It is an odd function of E or

M, so that r
sinmE Zsmph sinmBE sinpM dM.
Now sinpM dM = - %d(cospM S0 that, introducing E, we can write
sinmk = - —Z sinph sinmE 4 cos(pE - pe51nE)]

and, integrating by parts,
0

2_ sinph [sinmE cos(pE - pesinE)]

T D

simmk = -

o
mcosmE cos(pE - pesinE) dEz.

[e]
The integrated term vanishes at the limits; using the formula for the

product of two 0051nes, the integrand can be developed to give

ZSlnPM[ {cos (ptm)E - pes1nE] + cos [( -mE - PeSIHERdE

mz s1gpM{ P_m(pe + Jp+m(pe)} .

p=!
When m = 1, we have, by (3.4.6),

sinmBk

O

com 2 sinpM
sinE = Z———P Jp(pe). (3.5.1)
/)=/
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Similarly, we find
T

I
o
+

cosmE 2 Z cospM | cosmE cospM dM
r—

0
2 1rm
= a, + TZcospM | 5sinmE sin(pE - pesinE) dE

(after integration by parts)

= &g + chols)pM Jp~m(pe) - JPHn(pe)} .
T /s
Here 1
&y = ,,? cosmE dM = cosmE (1 - ecosE) dE
¢

cosmE —ecos(m+l)E - %ecos(m-l)E]

= S
c;___\o

lifm=(; -e/2 if m = 1; Oifm>1.
In particular, using (3.4.7),

1 cospM
cosE:-—e+EZ——J' e ). .5.2
5 5 p(p ) (3.5.2)

We now have enough formulas to expand guite a lot of functions
as Fourier series in the mean anomaly. For instance, Kepler's
equation combined with (3.5.1) will cope with E. r/a can be expanded
using (2.1.3) and (3.5.2). X and Y of (2.1.2) can be found similarly.
Sometimes a little ingenuity can help; in seeing, for instance, that
X/r3 = -a_3d2x/dM2, Y/r3 = -a—3d2Y/dM2. Another example is

sinf =V 1-e? sinE/(1 - ecosE) = cot( gﬁ{g)'
cosf is easily found from (2.1.1) and (3.3.4). A function such as
(r/a)2 can be easily written down in terms of a Fourier series in E,

and from there to one in M. And so on. Many more examples are given

137




Elliptic Motion. 3.5 L.
in Refs. 1 and k.

It should be noted that these Fourier series are valid for any
value of the eccentricity; but if they are re-arranged as power series

in the eccentricity, then the upper limit noted in Sec. 3.1 applies.

In the series for a/r or r/a or powers of these, it is noticeable
that the lowest power of e in any coefficient is equal to the multiple
of M in that term; this fact 1s a great help when deciding where to
truncate a series. Although the equality just pointed out is not
general, the fact that the lowest order of e increases as the co-
efficient of M is; this is a characteristic of these expansions
stressed by D'Alembert, which now bears his name. In the expansion
of (a/r)t-k times the sine or cosine of m times the eccentric or true
anomaly, the lowest power of e is in general equal to the coefficient

of M minus m.
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Post script.

My impression on reading these notes is that they are parlously
incomplete. No mention has been made of expansions in powers of the
time; nor of the first-order differences between two "nearly equal"
elliptic orbits. But these fall usually under the heading of "orbit
determination" and are dealt with more than adequately in Ref. 3.

Nothing has been said about the proper choice of units, even though,

without this, an attempt at practical calculation in celestial mechanics

may be stillborn. Also hyperbolic orbits have been neglected, in

spite of their increasing importance. Bearing in mind these and other

omissions, the reader should redress the balance by consulting some

of the references.
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Matrix Methods. 1.

by J.M.A. Danby

Consider the system of n first order differential equations

dXi/dt = fi(Xl, Xy wnes X5 t), i=1, 2, ... n, (1)

relating the n coordinates Xi and the time t. These can be written

symbolically in the condensed form

X! = £(%,t), (14)

where X and f are column matrices; the primes represent differentiation

with respect to the time.

Suppose that a solution ZR(t) has been found, having initial

. . _ 1" . . 1" L3
conditions KR(tO) = X,- A "slightly different" solution, XR-H§§,
might be found by solving equations (1) again, subject to initial
conditions zO +()§b at tO. Then(sz would be found by subtracting ER'

But this approach can be extravagant in significant figures, and it is

often better to solve directly for(sg.

If the squares and products of small quantities are neglected,

thenlsz_must satisfy the first variational equations of the system (l):
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Matrix Methods. 2.
'é T [ 7 ‘5)('1
X | = afl/axl afl/ax2 .. .afl/axn N (2)
(Sxe' = afe/axl afg/ax2 .. .afE/BXn (‘5}(2 .

- . -

6){;1 Lgnf‘n/axl afn/ax2 .. .afn/axrl (5x
L E J

Oxr = 1x. (24)

or

The solution §R(t) will be called the "reference orbit'". Each of the
partial differential coefficients in the n-by-n matrix A is evaluated

along the reference orbit, so that A is a known function of the time.

Equations (2) are solved when any set of n linearly independent
solutions is known. Finding these may present difficulties; but
suppose for the moment that we have such a set, and that it consists
of the separate columns of the matrix with elementsdixi.(t). Since
any linear combination of these columns also gives a solution, the

columns of

Qoo ) =[O, (0] [Ox, (2)] (3)

must all be solutions. The matrix Q(to,t) is equal to the identity

matrix when t = t this provides the necessary initial conditions to

O;

find its components by numerical integration. For example equations

(2) would be solved subject to the initial conditionsdsxl = 1,

b
18
[y




Matrix Methods. 3.

éXi =0 (1 # 1) to give the first column. The initial conditions for
the second colum would be(§X2 = l,é'Xi =0 (i # 2); and so on.
g?(to,t) is called the "matrizant" (or "fundamental solution matrix"
or "state transition matrix") of the system (2). Since each of its

columns satisfies (2), it must itself satisfy

() = A0 (%)

where {)(to,to) = 1.

If the functiondjg(t) were to have initial conditionsdsz(to) =C§§O,

then the appropriate solution of (2) would be

HX() = ) (£, t)8%,- (5)

It ig clear that g)(to,t) is the Jacobian matrix with components

N N
dXi/aXO,j, ete.

(Matrizants were introduced by Peano and Baker. Their theory is
discussed in the Summer Institute Notes of 1960, p. 95, et seq., and
in many texts on differential equations; but this theory is not

directly relevant to the present discussion.)

Consider the relations between residualséjg_at times tO’ tl, and

t2' We have

Qe 10085

{26,008,

Sty 8)8 Ayt X0y

Utgsty) = e, e )8t e, (6)

and 65
0

I_l)7>< I_l)txl

i

Therefore
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a result that is also evident from the fact that g?(to,t) is a Jacobian

matrix.

Consider the application of the matrizant to some situations in
the context of astronautics. Suppose that a reference orbit has been

calculated. If some maximum permissible error at time t. is specified,

1

then the maximum permissible error at any earlier time to can be cal-

culated if g}(tl,to) is known. If an error is observed at t_., the

07
effect at a later time t, can be calculated using g?(to,tl). But

if tl is fixed and to varies it is obviously inconvenient to solve the

equations for S?(to,t ) many times for different t., and it is better

1 0]

to put
- =\
Ox, = e, 6 X% (7)
=1 1700’

and solve the corresponding equations with the initial conditions

applied at t.. We notice, incidentally, that f?‘l(tl,to) = §?(to,tl).

1

Furthermore, it is possible to avoid the inversion of the matrix;

for let

]{(tl,t)§2(tl,t) = I.

Differentiating with respect to t, and using (4), we find

7y (8)

Equation (8) is called the "adjoint equation" of (4). (The use of the

adjoint equations in this sort of context was first cultivated in

i4”
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ballistics, and is described in "Mathematics for Exterior Ballistics"

by G.A. Bliss, Wiley, 1944.)

Now suppose that equations (4) and (8) have both been solved,
the initial conditions making each matrix equal to the identity matrix

at time t,. Writing (6) as

-1
Q(tO’tE) = Q(tl;t2>Q (tl’to)
= S, t,) Y0ty (6a)

we see that the matrizant relating any two times can be found.

Normally X will have six components, of position

r=1y|-= X2 , and velocity r' = [y' = X5 .
7 2| %

Let the matrizant in (5) be subdivided into four three-by-three matrices:

QU e) = fult,,0)  V(s,,0)]. (9)
W(to,t) Y(to,t)

Suppose that an errordjzo is observed at tO’ and it is required that
after a thrust has been applied there will be a velocity residual

dSr' such thatdjz at time t 1is zero. Then we have

20
(556 = VW, (10)

Consider motion subject to a force function R. The differential
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equations of motion are

! = ! = ! = ! = ! = 1 =
Xs L X3 Xg, X3 = Xg, X BR/aXl, X4 8R/6X2, X2 aR/aX3.
The first variational equations can be written as

Ox' = 10x,

where
A= 0 0 0 1 00
0 0 0 0O 1 0
0 0 0 0 0 1
<32R/3X12 aQR/axlaxg 32R/8X§X3
aeR/axlaxg agR/axeg agR/QXéBD%
?ER/axsaxl aQR/aX38X2 82R/3X32

(@]
(@]
(@]

(@
O
O

O
(@)
O

I}
Q
H

-
0
Y
T
—~
=
=
~—

Then substituting from (9) and (11) into the equation g?' = Ag?, we find
U'=W, V'=7Y, W'=BU, Y's= B,
from which

U" = BU and V" = BV. (12)

Equations (12) are to be solved subject to the initial conditions

U(to,to) = I, V(to,to) = 0;
U’(tO,tO) = 0, V‘(to,to) = TI. (13)
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The columns of U and V are six linearly independent solutions of

the equation
O r = Bbr, (14)

which is the first variational equation of the equation of motion in

the form r" = gradR.

Letézo and 636 be the initial increments in position and velocity

to be applied to the reference orbit at time t Then at time t

o
Hr = U(to,t)(SEO + V(to,t)6£c'). (15)
6_1'_ is a solution of (14), and since the components Oféfo and(S_J_:_'O'

can be considered as six independent, arbitrary constants, it is clear

that (15) is the general solution of {(1k).

The matrizant and its components should always be considered as

functions of two variables (two independent times). Now consider

t
Z(tyst) =ft u(T,t)aT.
0

We have

ft
9z/ot = I+ t,[QU(T,£) /2] aT

t
I%z/at" =[ to(an(T,t) /ate) aT

t
=f tB(t)U(T, t)dT

= BZ.
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So Z satisfies the differential equation as well as the initial con-

ditions for V, and must therefore be identical with V. Hence
U(tO,t) = -av(to,t)/amo. (16)
So the matrizant (9) can be written
Qeyt) = | oty Vit (17

-e?v/atato dV/ot

Let (2'l(to,t) = 27(to,t) =

|
(]
<

=
=<

Then from (8) and (11) we find

=
<
1l

|

h
<t
(@)
-

W! I W Y| |B 0
Therefore
f1=.0, ¥'= W, 0 =-T8, W - -18
So
V" =18, I"= 9B, (18)
where
V(to,to) = 0, Y(to,to) =TI,
v'(to,to) = -I, Y'(to,to) = 0. (19)

Now B is symmetrical, so that transposing equations (18), we find

7T - BY , YY" = BY . (18a)

147




Matrix Methods. 9.

Comparing (18A) and (19) with (12) and (13), we see that

F=ov, G=Y, #=W, and ¥T=0.
Therefore
Q"l(to,t) v vt ¢ <7 (20)
WY RPN

a result that applies only to suiteble equations arising from motion

in the conservative field of force.

The components of a matrizant would normally have to be found
numerically; but in some cases it is possible to find them analytically.
This is notably so in the cese of Keplerian motion, for which the
components of V are given in & paper in A.J. 67, June, 1962. This
matrizant has possible applications in perturbation problems in
celestial mechanics. The components are most easily found, not by
solving the differential equation, but by considering, from first
principles, what the effects of errors in velocity at time t. will

0
be on errors in position at time t.

Consider the equation
Sx' = afx + g(t), (21)

in which a "forcing function", g(t), has been added to (2). The
equation is no longer homogeneous, and one way to solve it is to take

the solution of the homogeneous pert, viz.
Ox(t) = Q (£, )8%,, (22)
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and allow the arbitrary constants,éigo, to vary. Then

OX' = V8%, +Q 5%

A08%, Q5%

Substituting this, and (5), into (21), we have

AQ&_{O +Q 5% = AQé)_(O + g

so that
J[t :
X = T edt.
0% =)+ () &

The complete and general solution is therefore

t 1
6% = v, t)6x, + Q(to,tjto (3 (o DeMaT, (23)

where(sgo is once again constant. Tais is the exact solution of (21),
subject to the initial conditions(szﬁt CSX ; no conditions about
orders of magnitude are imposed. The first term, which includes the
rbitrary constants, is the complementary function, and the second is
the particular integral. If the particular integral is to be found
numerically, probably the best procedure is to solve equations (21)
subject to the initial conditions&&(to) = 0. (23) can be simplified

by the use of the multiplication formula (6) to give

t
5% = Qt,,0)8%, +ftoQ<T,t>§<T>aT. (21)

Another form is

X = Q)(t,,t)8%, + Q(s,t) Q s)g(l)at; (25)
0’720
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where s is an arbitrary time, chosen to make (? as simple as possible.

If the equations of motion are in cartesian coordinates, then
the first three components of g are zero; writing the last three as

£, we have, from (24)

t
Oz = Ulty,6)8r, + V(t,,6)8z, +ftov(T,t>£<T)dT- (26)

Or, from (25) and (20),
Oz = Uty t)8zy + V(t,,t)8x)
+[us,0) e, )] [ ] T (27)

T
tO U (Sﬂr)

In the case of disturbed Keplerian motion, s would certainly be a
time of perihelion passage. Also in this case there are advantages
in changing the independent variable from the time to the eccentrie

anomaly in the reference orbit.






